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External field

Many kinds of diffusion-influenced reactions can be

described by the lattice-based random walk Monte Carlo

simulations.1-7 Recently, we reported the fundamental di-

stribution functions for the lattice-based random walk model

in one dimension for the nonreactive and the Smoluchowski

boundary conditions.8 We also obtained the discrete version

of the survival probability for the Smoluchowski boundary

condition,9 which can reduce to the well-known continuum

version result.8

The previous results only consider the case where the

probability of the movement of the walker is completely

random or not affected by other external fields, which

include gravitational, magnetic, and electric effects. Since

these external field effects on diffusion-reaction systems are

ubiquitous in a broad range of chemical and biological

systems,9-18 it is of use to generalize the previous results to

include the external field effects.

Exact Solutions in One Dimension

Firstly, we consider the random walk model without a

reactive trap. Let PN(x, n; x0) be the non-reactive probability

that the walker is observed at x after n steps with the starting

position x0 on the one-dimensional lattice. Suppose that

jumps to the left and to the right occur with probability p and

q = 1−p, respectively. Then, the probability that the walker
moved k times to the left and n – k times to the right is given

by the binomial distribution

PN(x, n; x0) = nCkp
kqn−k, (1)

where nCk = n!/{k!(n−k)!} and k = (x0 + n − x)/2 should be an

integer satisfying −n + x0 ≤ x ≤ n + x0. Unless x0 + n − x is a

non-negative even number, PN is zero.

The random walk model with a single static perfect trap

can be considered. This model corresponds to diffusion-

reaction systems with the Smoluchowski or the absorbing

boundary condition. In other words, the random walker can-

not escape once trapped. Let PSM(x, n; x0) be the probability

that the walker is observed at x after n steps with the starting

position x0 for the Smoluchowski boundary condition.

Without loss of generality, we can assume that the trap is

located at the origin and the starting position is x0 > 0. Then,

we find

PSM(x,n;x0) = . (2)

Note that n + x0 is the maximum distance after n steps. Since

= PN(x, n; −x0),
we have the following relation,

PSM(x,n;x0) 

= . (3)

This relation between PSM and PN generalizes the previous

result with equal jumping probabilities. Note that PSM is zero

at every other x like PN.

The survival probability SSM(n; x0) can be obtained by

summing PSM(x, n; x0) of Eq. (3) over all possible x as

.  (4)

Note that the last term comes from the summation only over

. Since  = , Eq.

(4) can be rearranged as

.(5)

Because of the property of PN, 

holds when x0 + n is even.

Relation to the Solutions in Diffusion-influenced Reactions

As n increases, the following well-known de Moivre-

Laplace theorem19 can be used
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for k in the neighborhood of np. This theorem means that in

the large n limit or in the long time limit, the discrete

binomial distribution B(n, p) can be approximated by the

normal distribution function N(np, npq) with the mean value

np and the variance npq especially in the vicinity of k = np.

Then, we obtain

. (7)

Note that this approximation is better when x − x0 = n(q−p),

namely, Eq. (6) is better when p = q = 1/2 around x = x0.

Since PN is zero at every other x in the discrete version, we

have multiplied the factor 1/2. We can relate the parameters

in the discrete version and those in the continuum version.

When D is the diffusion constant, t is the time, and a is the

dimensionless external field strength, we have n = 2Dt and 

. (8)

Simple computation leads to pq = 1/(2cosh a)2, p/q = e2a,

and p − q = tanh a. From Eq. (7), we have 

. (9)

In the small field strength limit or , cosh  and

sinh , then we can reduce Eq. (9) to the well-known

expression11

. (10)

When we compare the results from Eqs. (9) and (10) with

those from Eq. (1), we find that Eq. (10) usually produces

results with smaller deviations than Eq. (9). This can be

understood by the fact that Eq. (6) better describes the

situation with . Therefore, the following approximation

is found to be better in our model,

,  (11)

with a = tanh−1(2p − 1). Then, for the PSM function of Eq.

(2), we can have the known expression of11

. (12)

The survival probability SSM(n; x0) of Eq. (5) can be ap-

proximated by the following integral: 

,

, (13)

where erfc(x) is the complementary error function. The

second equality comes from the substitution of (2x − n)2 =

2nu2. If n = 2Dt, this equation is again the same as the well-

known survival probability with the Smoluchowski boundary

condition11 

.

(14)

Therefore, the discrete exact solutions can be reduced to the

known corresponding solutions in diffusion-influenced

reactions only in the small field strength limit.

Monte Carlo Simulation Results

To confirm the present results, we perform the Monte
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Figure 1. The time-dependence of the survival probability function
for x0 = 2 and p = 0.55. Closed circles are from the simulation
results, which are in perfect agreement with those from Eq. (4) in
the dotted line. The approximated results from Eq. (14) are plotted
in the solid line. 
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Carlo simulations of the latticed-based random walk model.2-6

After a particle is initially implanted at x0, it starts moving in

random directions (one of two directions in this case) until it

reaches the origin where the trap exists. Under the Smolu-

chowski boundary condition, the reaction always occurs

when the particle moves to the trap. Therefore, when trapp-

ed, we do not have to follow the trajectory and start a new

trajectory. Ten million trajectories are averaged to obtain the

converged numerical results. 

In Figure 1, we plot the survival probabilities for x0 = 2

and p = 0.55 in unit-dimensionless variables.20 In one di-

mensional lattice, D = 1/2. One can confirm that Eq. (4)

perfectly reproduce the simulation results. Note that a can be

obtained by a = tanh−1(2p − 1) from Eq. (8). Therefore, we

can obtain the exact results more efficiently from Eq. (4)

than from simulations which have an inevitable statistical

noise. It should be noted that SSM(n + 1; x0) = SSM(n; x0)

holds. One can also see that the discrete [Eq. (4)] and the

continuum results [Eq. (14)] are in excellent agreement with

each other. The difference between two is quantified in

Figure 2, where the deviations of Eq. (14) from Eq. (4) are

compared for three conditions. For the condition of Figure 1,

the deviations reduce from approximate 3% to 1% as time

goes by. For the larger x0 and the larger p, the deviations

increase as expected from the approximations of Eq. (11).

In summary, the fundamental distribution functions for the

lattice-based random walk model in one dimension under

the influence of the external field effects are found for the

nonreactive and the Smoluchowski boundary conditions.

The discrete survival probability function for the Smolucho-

wski boundary condition is also found. Thus, the previous

results8 are generalized to include the external field effects.

The numerical simulation results can be replaced by these

superior analytic functions. These discrete functions are

confirmed to reduce to their corresponding continuum ver-

sion results only in the small field strength limit. Therefore,

we have to be careful to simulate the system affected by the

external field. The field effects between neighboring points

should be small enough usually by decreasing the lattice

constant,20 which increases the computational cost. One

important merit of this work is that we can find an optimized

lattice constant by quantifying the deviations caused by the

field effects.
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