DOI QR코드

DOI QR Code

하수슬러지의 반탄화 특성에 관한 연구

A Study on Torrefaction Characteristics of Sewage Sludge

  • Lim, Dae-Won (Department of Environmental Engineering, Kongju National University) ;
  • Poudel, Jeeban (Division of Mechanical and Automotive Engineering, Kongju National University) ;
  • Oh, Sea Cheon (Department of Environmental Engineering, Kongju National University)
  • 투고 : 2014.07.10
  • 심사 : 2014.07.27
  • 발행 : 2014.10.10

초록

본 연구에서는 고형연료로써의 에너지 잠재성을 평가하기 위하여 하수슬러지의 기본특성에 대한 반탄화의 영향을 고찰하였으며, 이를 위하여 $150{\sim}600^{\circ}C$의 온도조건에서 하수슬러지의 반탄화 실험을 수행하였다. 반탄화된 하수슬러지는 에너지 수율, 회분, 가연분 및 고위발열량에 의하여 분석되었으며, 반탄화 과정에서 발생되는 가스성분 또한 분석하였다. 또한 본 연구에서는 하수슬러지의 반탄화 반응에 대한 속도론적 해석을 위하여 열중량 분석을 수행하였다. 본 연구로부터 반탄화 온도가 증가함에 따라 회분함량은 증가하는 반면에 에너지 수율, 고위발열량 및 가연분은 감소하는 것으로 나타났으며, 또한 $300^{\circ}C$에서 하수슬러지 내에 함유된 가연성 성분의 열분해로 인하여 일산화탄소 및 탄화수소 가스가 발생하기 시작함을 확인할 수 있었다.

In this work, the effect of torrefaction on the basic characteristic of sewage sludge was studied to evaluate the energy potential as a solid fuel. Torrefaction experiments were performed at temperatures of $150{\sim}600^{\circ}C$. The torrefied sewage sludge was characterized by the energy yield, ash content, volatile fraction and high heating value (HHV). The gaseous products from torrefaction of the sewage sludge were also analyzed. Thermogravimetric analysis was carried out for the kinetic analysis of sewage sludge torrefaction. From this work, it was found that the ash content increased with an increase of the torrefaction temperature while the energy yield, HHV and volatile fraction decreased. It was also found that the emission of carbon monoxide and hydrocarbon gases started at $300^{\circ}C$ by the thermal degradation of volatile components in the sewage sludge.

키워드

참고문헌

  1. S. Shuit, K. Tan, K. Lee, and A. Kamaruddin, Oil Palm Biomass as a Sustainable Energy Source: A Malaysian Case Study, Energy, 34, 1225-1235 (2009). https://doi.org/10.1016/j.energy.2009.05.008
  2. L. Zhang, C. C. Xu, and P. Champagne, Overview of Recent Advantage in Thermo-chemical Conversion of Biomass, Energ. Convers. Manage., 51, 969-982 (2010). https://doi.org/10.1016/j.enconman.2009.11.038
  3. J. Werther, M. Saenger, E. Hartge, T. Ogada, and Z. Siagi, Combustion of Agricultural Residues, Prog. Energ. Combust. Sci., 26, 1-27 (2000). https://doi.org/10.1016/S0360-1285(99)00005-2
  4. H. Goyal, D. Seal, and R. Saxena, Bio-fuels from Thermochemical Conversion of Renewable Sesources: A Review, Renew. Sust. Energ. Rev., 12, 504-517 (2008). https://doi.org/10.1016/j.rser.2006.07.014
  5. J. H. Gu and S. C. Oh, Combustion Characteristics of Biomass and Refuse Derived Fuel, Appl. Chem. Eng., 23, 456-461 (2012).
  6. W. Chen, H. Hsu, K. Lu, W. Lee, and T. Lin, Thermal Pretreatment of Wood (Lauan) Block by Torrefaction and Its Influence on the Properties of the Biomass, Energy, 36, 3012-3021 (2011). https://doi.org/10.1016/j.energy.2011.02.045
  7. Y. Uemura, W. N. Omar, T. Tsutsui, and S. B. Yusup, Torrefaction of Oil Palm Wastes, Fuel, 90, 2585-2591 (2011). https://doi.org/10.1016/j.fuel.2011.03.021
  8. M. Van der Stelt, H. Gerhauser, J. Kiel, and K. Ptasinski, Biomass Upgrading by Torrefaction for Production of Biofuels: A Review, Biomass Bioenergy, 35, 3748-3762 (2011).
  9. C. Couhert, S. Salvador, and J. Commandre, Impact of Torrefaction on Syngas Production from Wood, Fuel, 88, 2286-2290 (2009). https://doi.org/10.1016/j.fuel.2009.05.003
  10. W. Chen and P. Kuo, A Study on Torrefaction of Various Biomass Materials and Its Impact on Lignocellulosic Structure Simulated by a Thermogravimetry, Energy, 35, 2580-2586 (2010). https://doi.org/10.1016/j.energy.2010.02.054
  11. V. Repellin, A. Govin, M. Rolland, and R. Guyonnet, Modelling Anhydrous Weight Loss of Wood Chips during Torrefaction in a Pilot Kiln, Biomass Bioenergy, 34, 602-609 (2010). https://doi.org/10.1016/j.biombioe.2010.01.002
  12. H. T. Lee, G. T. Jin, and I. C. Lee, Technical Status on the Utilization of Sewage and Wastewater Sludge, J. Korean Solid Wastes Eng. Soc., 11, 670-679 (1994).
  13. Y. W. Nam and K. S. Han, A Study on the Present State and Improvement Plan of Domestic Sewage Sludge Treatment, J. Korean Solid Wastes Eng. Soc., 28, 103-109 (2011).
  14. C. G. Phae, J. K. Cho, N. H. Kwak, and D. W. Kim, A Study on the Evaluation of Optimum Treatment by Analysis of Sewage Sludge Properties, J. Korean Solid Wastes Eng. Soc., 15, 252-260 (1998).
  15. H. H. Horowitz and G. Metzger, A New Analysis of Thermogravimetric Traces, Anal. Chem., 35, 1464-1468 (1963). https://doi.org/10.1021/ac60203a013
  16. J. D. Cooney, M. Day, and D. M. Wiles, Thermal Decomposition of Ploy(ethylene Terephthalate): A Kinetic Analysis of Thermogravimetric Data, J. Appl. Polym. Sci., 28, 2887-2902 (1983). https://doi.org/10.1002/app.1983.070280918

피인용 문헌

  1. Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars vol.12, pp.3, 2019, https://doi.org/10.3390/en12030565
  2. Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer? vol.13, pp.4, 2014, https://doi.org/10.3390/ma13040954