DOI QR코드

DOI QR Code

Phenothiazine과 2,1,3-Benzothiadiazole을 포함한 Copolymer의 합성 및 Side-chain 치환에 따른 Photovoltaic 특성 연구

Synthesis, Photovoltaic Properties and Side-chain Effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole

  • 투고 : 2014.07.08
  • 심사 : 2014.08.20
  • 발행 : 2014.10.10

초록

본 연구에서는 phenothiazine과 benzothiadiazole을 기반으로 하고, phenothiazine의 질소 위치에 다양한 side-chain을 치환한 고분자를 합성하였다. 합성된 고분자는 광학적, 전기화학적 분석 결과 300~700 nm에서 흡수를 보였고, -5.4 eV 정도의 이상적인 HOMO energy level를 갖는 특성을 확인하였다. 고분자와 $PC_{71}BM$을 광활성층으로 사용한 소자를 제작하였고, 측정결과 branched side-chain을 가지며 탄소수가 많은 P2HDPZ-bTP-OBT가 2.4%로 최대 광전변환효율을 갖는 것으로 확인되었다($V_{OC}$ : 0.74 V, $J_{SC}$ : $6.9mA/cm^2$, FF : 48.0%).

In this study, three kinds of polymers based on phenothiazine-benzothiadiazole were synthesized by a Suzuki coupling reaction, and the various side-chains were substituted at the nitrogen of phenothiazine. The optical and electrochemical properties of synthesized polymers were analyzed. The results indicate that their absorption ranged from 300 to 700 nm, and also confirmed the ideal highest occupied molecular orbital (HOMO) energy level was about -5.4 eV with low band-gap energy. Photovoltaic devices were fabricated using a photoactive layer composed of a blended solution of the polymer and $PC_{71}BM$ in ortho-dichlorobenzene The device with P2HDPZ-bTP-OBT containing the branched side-chain and long chain showed the best performance; the maximum power conversion efficiency of this device was 2.4% (with $V_{OC}$ : 0.74 V, $J_{SC}$ : $6.9mA/cm^2$, FF : 48.0%).

키워드

참고문헌

  1. M. Kenisarin and K. Mahkamov, Solar energy storage using phase change materials, Renewable and Sustainable Energy Reviews, 44, 1913-1965 (2007).
  2. C. G. Granqvist, Solar energy materials, Adv. Mater., 15, 1789-1803 (2003). https://doi.org/10.1002/adma.200300378
  3. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency, Adv. Mater., 18, 789-794 (2006). https://doi.org/10.1002/adma.200501717
  4. Y. Sun, Q. Wu, and G. Shi, Graphene based new energy materials, Energy & Environ. Sci., 4, 1113-1132 (2011). https://doi.org/10.1039/c0ee00683a
  5. J. M. Nunzi, Organic photovoltaic materials and devices, Comptes Rendus Physique, 3, 523-542 (2002). https://doi.org/10.1016/S1631-0705(02)01335-X
  6. J. Lewis, Material challenge for flexible organic devices, Materials today, 9, 38-45 (2006). https://doi.org/10.1016/S1369-7021(06)71446-8
  7. J. A. Hauch, P. Schilinsky, S. A. Choulis, R. Childers, M. Biele, and C. J. Brabec, Flexible organic P3HT : PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime, Sol. Energy Mater. Sol. Cells, 92, 727-731 (2008). https://doi.org/10.1016/j.solmat.2008.01.004
  8. M. Al-Ibrahim, H. K. Roth, U. Whokhavets, G. Gobsch, and S. Sensfuss, Sensfuss, Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene, Sol. Energy Mater. Sol. Cells, 85, 13-20 (2005).
  9. H. J. Song, D. H. Kim, E. J. Lee, and D. K. Moon, Conjugated polymers consisting of quinacridone and quinoxaline as donor materials for organic photovoltaics: orientation and charge transfer properties of polymers formed by phenyl structures with a quinoxaline derivative, J. Mater. Chem. A, 1, 6010-6020 (2013). https://doi.org/10.1039/c3ta10512a
  10. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, Polym. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years), Reviews, 48, 531-582 (2008). https://doi.org/10.1080/15583720802231833
  11. S. W. Heo, J. Y. Lee, H. J. Song, J. R. Ku, and D. K. Moon, Patternable brush painting process for fabrication of flexible polymer solar cells, Sol. Energy Mater. Sol. Cells, 95, 3041-3046 (2011).
  12. S. W. Heo, K. W. Song, M. H. Choi, T. H. Sung, and D. K. Moon, Patternable solution process for fabrication of flexible polymer solar cells using PDMS, Sol. Energy Mater. Sol. Cells, 95, 3564-3572 (2011). https://doi.org/10.1016/j.solmat.2011.09.012
  13. S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, and J. Roncali, Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells, J. Am. Chem. Soc., 128, 3459-3466 (2006). https://doi.org/10.1021/ja058178e
  14. Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Simultaneous enhancement of open-circuit voltage, short-circuit density, and fill factor in polymer solar cells, Adv. Mater., 23, 4636-4643 (2011). https://doi.org/10.1002/adma.201103006
  15. J. Hou, H. Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, and G. Li, Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells, J. Am. Chem. Soc., 131, 15586-15587 (2009). https://doi.org/10.1021/ja9064975
  16. J. Y. Choi, D. H. Kim, B. Lee, and J. H. Kim, Synthesis and electro-optical properties of ${\pi}$-conjugated polymer based on 10-hexylphenothiazine and aromatic 1,2,4-triazole, Bull. Kor. Chem. Soc., 30, 1933-1938 (2009). https://doi.org/10.5012/bkcs.2009.30.9.1933
  17. S. K. Son, Y. S. Choi, W. H. Lee, Y. T. Hong, J. R. Kim, W. S. Shin, S. J. Moon, D. H. Hwang, and I. N. Kang, Synthesis and properties of phenothiazylene vinylene-based polymers: new organic semiconductors for filed-effect transistors and solar cells, J. Polym. Sci. Part A Polym. Chem., 48, 635-646 (2010). https://doi.org/10.1002/pola.23814
  18. H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells, J. Polym. Sci. Part A Polym. Chem., 48, 4823-4834 (2010). https://doi.org/10.1002/pola.24273
  19. G. Koeckelberghs, L. De Cremer, A. Persoon, and T. Verbiest, Influence of the substituent and polymerization methodology on the properties of chiral poly(dithieno[3,2-b : 2',3'-d]pyrrole)s, Macromolecules, 40, 4173-4181 (2007). https://doi.org/10.1021/ma062808v
  20. N. Blouin, A. Michaud, and M. Leclerc, A low-bandgap poly(27-carbazole) derivative for use in high-performance solar cells, Adv. Mater., 19, 2295-2300 (2007). https://doi.org/10.1002/adma.200602496
  21. L. Y. Yang, C. Wang, L. Q. Li, S. Janietz, A. Wedel, Y. L. Hua, and S. G. Yin, Synthesis and characterization of novel poly(p-phenylenevinylene) derivatives containing phenothiazine-5,5-dioxide moieties, J. Polym. Sci. Part A Polym. Chem., 45, 4291-4299 (2007). https://doi.org/10.1002/pola.22171
  22. D. H. Yun, H. S. Yoo, S. W Heo, H. J. Song, D. K. Moon, J. W. Woo, and Y. S. Park, Synthesis and photovoltaic characterization of D/A structure compound based on N-substituted phenothiazine and benzothiadiazole, J. Ind. Eng. Chem., 19, 421-426 (2013). https://doi.org/10.1016/j.jiec.2012.08.033
  23. I. K. Moon, C. S. Choi, and N. J. Kim, React. Photorefractivity of poly[methyl(3-phenothiazine-10-ylpropyl)siloxane] doped with chromosphere and $C_{60}$, Funct. Polym., 68, 910-914 (2008). https://doi.org/10.1016/j.reactfunctpolym.2007.12.010
  24. S. K. Kim, J. H. Lee, and D. H. Hwang, EL properties of an alternating copolymer composed of phenothiazine and thiophene heterocycles, Synthetic Metals, 152, 201-204 (2005). https://doi.org/10.1016/j.synthmet.2005.07.212
  25. M. Sailer, R. A. Gropeanu, and T. J. J. Muller, Practical synthesis of iodo phenothiazines. A facile access to electrophore building blocks, J. Org. Chem., 68, 7509-7512 (2003). https://doi.org/10.1021/jo034555z
  26. M. Sailer, A. W. Franz, and T. J. J. Muller, Synthesis and electronic properties of monodisperse oligophenothiazines, Chem. Eur. J., 14, 2602-2614 (2008). https://doi.org/10.1002/chem.200701341
  27. M. S. Jung, W. Shin, S. J. Park, H. You, J. B. Park, H. S. Suh, Y. H. Lim, D. Y. Yoon, and J. H. Kim, Synthesis and characterization of thermally cross-linkable hole injection polymer based on poly(10-alkylphenothiazine) for polymer light-emitting diode, Synthetic Metals, 159, 1928-1933 (2009). https://doi.org/10.1016/j.synthmet.2009.05.034
  28. P. Ding, C. C. Chu, Y. Zou, D. Xiao, C. Pan, and C. S. Hsu, New low bandgap conjugated polymer derived from 2,7-carbazole and 5,6-bis(octyloxy)-4,7-di(thiophene-2-yl) benzothiadiazole: synthesis and photovoltaic properties, J. Appl. Polym. Sci., 123, 99-107 (2012). https://doi.org/10.1002/app.34439
  29. Z. B. Lim, B. Xue, S. Bomma, H. Li, S. Sun, Y. M. Lam, W. J. Belcher, P. C. Dastoor, and A. C. Grimsdale, New moderate bandgap polymers containing alkoxysubstituted-benzo[c][1,2,5]thiadiazole and thiophene-based units, J. Polym. Sci. Part A Polym. Chem., 49, 4387-4397 (2011). https://doi.org/10.1002/pola.24879
  30. M. Helgesen, S. A. Gevorgyan, F. C. Krebs, and R. A. J. Janssen, Substituted 2,1,3-benzothiadiazole- and thiophene-based polymers for solar cells-introducing a new thermocleavable precursor, Chem. Mater., 21, 4669-4675 (2009). https://doi.org/10.1021/cm901937d
  31. K. Ranjith, S. K. Swathi, A. Malavika, and P. C. Ramamurthy, Random copolymers consisting of dithienylcyclopentadienone, thiophene and benzothiadiazole for bulk heterojunction solar cells, Sol. Energy Mater. Sol. Cells, 105, 263-271 (2012). https://doi.org/10.1016/j.solmat.2012.06.022
  32. N. Berton, C. Ottone, V. Labet, R. de Bettignies, S. Bailly, A. Grand, C. Morell, S. Sadki, and F. Chandezon, New alternating copolymers of 3,6-carbazoles and dithienylbenzothiadiazoles: synthesis, characterization, and application in photovoltaics, Macromolecular Chem. Phy., 212, 2127-2141 (2011). https://doi.org/10.1002/macp.201100209
  33. R. Qin, W. Li, C. Li, C. Du, C. Veit, H. F. Schleiermacher, M. Andersson, Z. Bo, Z. Liu, O. Inganas, U. Wuerfel, and F. Zhang, A planar copolymer for high efficiency polymer solar cells, J. Am. Chem. Soc., 131, 14612-14613 (2009). https://doi.org/10.1021/ja9057986
  34. Y. Sun, B. Lin, H. Yang, and X. Gong, Improved bulk-heterojunction polymer solar cell performance through optimization of the linker groupin donor-acceptor conjugated polymer, Polymer, 53, 1535-1542 (2012). https://doi.org/10.1016/j.polymer.2012.02.007
  35. B. Zhao, D. Liu, L. Peng, H. Li, P. Shen, N. Xiang, Y. Liu, and S. Tan, Effect of oxadiazole side chains based on alternating fluorene- thiophene copolymers for photovoltaic cells, Eur. Polym. J., 45, 2079-2086 (2009). https://doi.org/10.1016/j.eurpolymj.2009.03.018
  36. E. Wang, L. Hou, Z. Wang, Z. Ma, S. Hellstrom, W. Zhuang, F. Zhang, O. Inganas, and M. R. Andersson, Side-chain architectures of 2,7-carbazole and quinoxaline-based polymers for efficient polymer solar cells, Macromolecules, 44, 2067-2073 (2011). https://doi.org/10.1021/ma102783d
  37. S. Agrawal, M. Pastore, G. Marotta, M. A. Reddy, M. Chandrasekharam, and F. de Angelis, Optical properties and aggregation of phenothiazine-based dye-sensitizers for solar cells applications: a combined experimental and computational investigation, J. Phy. Chem. C, 117, 9613-9622 (2013). https://doi.org/10.1021/jp4026305
  38. S. K. Son, Y. S. Choi, W. H. Lee, Y. T. Hong, J. R. Kim, W. S. Shin, S. J. Moon, D. H. Hwang, and I. N. Kang, Synthesis and properties of phenothiazylene vinylene-based polymers: new organic semiconductors for field-effect transistors and solar cells, J. Polym. Sci. Part A Polym. Chem., 48, 635-646 (2010). https://doi.org/10.1002/pola.23814
  39. I. H. Jung, J. Y. Yu, E. J. Jeong, J. S. Kim, S. C. Kwon, H. Y. Kong, K. H. Lee, H. Y. Woo, and H. K. Shim, Synthesis and photovoltaic properties of cyclopentadithiophene-based low-bandgap copolymers that contain electron-withdrawing triazole derivatives, Chem. Eur. J. 16, 3743-3752 (2010). https://doi.org/10.1002/chem.200903064
  40. D. Sahu, H. Padhy, D. Patra, J. H. Huang, and C. W. Chu, H. C. Triphenylamine-based conjugated polymers with main-chain donors and pendent acceptors for organic photovoltaics, J. Polym. Sci. Part A Polym. Chem. 48, 5812-5823 (2010). https://doi.org/10.1002/pola.24389
  41. R. Duane, L. Ye, X. Gui, Y. Huang, P. Wang, S. Zhang, J. Zhang, L. Huo, and J. Hou, Application of two-demensional conjugated benzo[1,2-b : 4,5-b']dithiophene in quinoxaline-based photovoltaic polymers, Macromolecules, 45, 3032-3038 (2012). https://doi.org/10.1021/ma300060z
  42. H. Zhou, L. Yang, S. Stoneking, and W. You, A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells, Appl. Mater. Interfaces, 2, 1377-1383 (2010). https://doi.org/10.1021/am1000344
  43. K. Cao, Z. Wu, S. Li, B. Sun, G. Zhang, and Q. Zhang, A low bandgap polymer based on isoindigo and bis(dialkylthienyl) benzodithiophene for organic photovoltaic applications, J. Polym. Sci. Part A Polym. Chem., 51, 94-100 (2013). https://doi.org/10.1002/pola.26275
  44. H. J. Song, D. H. Kim, E. J. Lee, S. W. Heo, J. Y. Lee, and D. K. Moon, Conjugated polymer consisting of quinacridone and benzothiadiazole as donor materials for organic photovoltaics: coplanar property of polymer backbone, Macromolecules, 45, 7815-7822 (2012). https://doi.org/10.1021/ma301466m
  45. K. W. Song, H. J. Song, T. H. Lee, S. W. Heo, and D. K. Moon, An effect on the side chain position of D-${\pi}$-A-type conjugated polymers with $sp^2$-hybridizedorbitalsfororganicphotovoltaics, Polym. Chem., 4, 3225-3235 (2013). https://doi.org/10.1039/c3py00195d
  46. I. Osaka, G. Sauve, R. Zhang, T. Kowalewski, and R. D. Mccullough, Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors, Adv. Mater., 19, 4160-4165 (2007). https://doi.org/10.1002/adma.200701058
  47. L. Liang, J. T. Wang, C. Y. Mei, and W. S. Li, Novel photovoltaic polymers constructed from alternative donor and acceptor units having one mother structure, Polymer, 54, 2278-2284 (2013). https://doi.org/10.1016/j.polymer.2013.02.036
  48. Y. Ie, J. Huang, Y. Uetani, M. Karakawa, and Y. Aso, Synthesis, properties, and photovoltaic performances of donor-acceptor copolymers having dioxocycloalkene-annelated thiophenes as acceptor monomer units, Macromolecules, 45, 4564-4571 (2012). https://doi.org/10.1021/ma300742r
  49. Y. H. Seo, W. H. Lee, J. H. Park, J. H. Park, C. B. Bae, Y. T. Hong, J. W. Park, and I. N. Kang, Side-chain effects on phenothiazine-based donor-acceptor copolymer properties in organic photovoltaic devices, J. Polym. Sci. Part A Polym. Chem., 50, 649-658 (2012). https://doi.org/10.1002/pola.25074
  50. J. W. Jo, S. S. Kim, and W. H. Jo, Synthesis of thieno[3,4-d]thiazole-based conjugated polymers and HOMO level tuning for high VOCphotovoltaiccell, Org. Electron., 13, 1322-1328 (2012). https://doi.org/10.1016/j.orgel.2012.04.009

피인용 문헌

  1. Synthesis and Photovoltaic Properties of Conjugated Polymers Having Push-pull Structure according to the Type of Side-chain in the N-Substituted Phenothiazine vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1111
  2. Synthesis, characterization, photophysical properties, and computational studies on N-hexylphenothiazine/cyanopyridine based π-conjugated copolymers vol.33, pp.6, 2014, https://doi.org/10.1177/0954008320988757
  3. Facile synthesis of alkylated phenothiazine-isatin polymers by super acid catalyst: Effect of alkyl chain length on the properties vol.1242, pp.None, 2021, https://doi.org/10.1016/j.molstruc.2021.130714