DOI QR코드

DOI QR Code

Pyrolysis Characteristic and Ignition Energy of High-Density Polyethylene Powder

고밀도 폴리에틸렌 분진의 열분해성과 착화에너지

  • Han, Ou-Sup (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Jung-Suk (Occupational Safety & Health Research Institute, KOSHA)
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이정석 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2014.03.31
  • Accepted : 2014.06.18
  • Published : 2014.06.30

Abstract

The aim of this work is to provide new experimental data on the pyrolysis characteristics and the minimum ignition energy (MIE) by using the same high-density polyethylene (HDPE) powder in domestic HDPE dust explosion accident. To evaluate the explosion sensitivity of HDPE, thermo-gravimetric analysis (TGA), differential scanning calorimeter (DSC) and MIE apparatus (MIKE-3, K$\ddot{u}$hner) was conducted. The measurements showed the volume median diameter of $61.6{\mu}m$ but the particle number density of 98 % in the range $0.4{\sim}4{\mu}m$. The ignition temperature from the results of TGA and DSC in HDPE dust layers was observed in the range of $380{\sim}490^{\circ}C$. MIE was measured under 1 mJ in the HDPE dust concentration of $1200{\sim}1800g/m^3$, it was found that the ratio of particle number density in the range $0.4{\sim}4{\mu}m$ was very high (98%).

본 연구에서는 자료 제공을 목적으로 국내 분진폭발사고에서와 동일한 고밀도 폴리에틸렌(high-density polyethylene, HDPE ) 분진을 사용하여 열분해성과 착화에너지를 실험적으로 조사하였다. 폭발 민감도를 측정하기 위하여 시차주사열량계(differential scanning calorimeter, DSC), 열중량분석기(thermo-gravimetric analysis, TGA) 및 최소착화에너지(minimum ignition energy, MIE) 측정장치를 사용하였다. HDPE의 체적기준 평균입경은 $61.6{\mu}m$가 얻어졌으나, 입자 크기에 따른 입자 수밀도(particle number density) 분석에서는 $0.4{\sim}4{\mu}m$의 미세 입자가 98% 이상의 비율을 갖는 것으로 나타났다. TGA 및 DSC 측정결과로부터 HDPE는 $380{\sim}490^{\circ}C$의 온도 구간에서 발화가 일어날 수 있음을 알 수 있었고, MIE는 $1200{\sim}1800g/m^3$의 HDPE의 농도 범위에서 1 mJ 이하로 측정되었는데, 이는 입자 수밀도 기준에 따른 $0.4{\sim}4{\mu}m$의 미세 입자의 비율(98 %)이 매우 높았던 것이 원인으로 판단된다.

Keywords

References

  1. Korea Occupational Safety Health Agency (KOSHA), Explosion accident of HDPE Factory, Case Study of Severe Accident, (2013)
  2. Bandyopadhyay, S. and Bhaduri, D.B., "Prediction of ignition temperature of a single coal particle", Combust. Flame, 18, 411-415 (1972) https://doi.org/10.1016/S0010-2180(72)80192-5
  3. Chen, M., Fan, L.S. and Essenhigh, R.H., "Prediction and measurement of ignition temperatures of coal particles", Proceedings of the 20th International Symposium on Combustion, The Combustion Institute, Pittsburgh,PA, 1513-1521 (1984)
  4. Malow, M. and Wehrstedt, K.D., "Prediction of the self-accelerating decomposition temperature (SA-DT) for liquid organic peroxide from differential scanning calorimetry (DSC) measurements", J. Hazard Mater, A120, 21-24, (2005)
  5. ASTM, "Standard test method for minimum ignition energy of a dust cloud in air", E 2019-03. West Conshohocken, PA: ASTM International, (2007)
  6. IEC, "Method for Determining Minimum Ignition Energies of Dust/Air Mixtures", IEC International Standard 1241-2-3, International Electrotechnical Commission, Geneva, (1994)
  7. Soundararajan, R., Amyotte, P.R. and Pegg, M.J., Explosibility hazard of iron sulphide dusts as a function of particle size, J. Hazard. Mater. 51, 225-239 (1996) https://doi.org/10.1016/S0304-3894(96)01825-0
  8. Bennett, D., "A test for electrical ignitions of flammable dust clouds", J. Loss Prevent., Proc. 16, 33-40, (2003) https://doi.org/10.1016/S0950-4230(02)00086-4
  9. Calle, S., Klaba, L., Thomas, D., Perrin, L., and Dufaud, O., "Influence of the size distribution and concentration on wood dust explosion: experiments and reaction modelling", Powder Technology, 157(1-3), 144-148, (2005) https://doi.org/10.1016/j.powtec.2005.05.021
  10. Huang, Y., Risha, G. A., Yang, V., and Yetter, R. A., "Effect of particle size on combustion of aluminum particle dust in air", Combustion and Flame, 156(1), 5-13, (2009) https://doi.org/10.1016/j.combustflame.2008.07.018
  11. Benedetto, A. D., Russo, P., Amyotte, P., and Marchand, N., "Modelling the effect of particle size on dust explosions", Chemical Engineering Science, 65(2), 772-779, (2010) https://doi.org/10.1016/j.ces.2009.09.029
  12. Eckhoff, R. K., "Dust explosions in the process industries-3rd ed.", Gulf professional publishing (2003)
  13. Eckhoff, R. K. and Olsen, W., "On the minimum ignition energy (MIE) for propane/air", Journal of hazardous materials, 175(1-3), 293-297, (2009)