DOI QR코드

DOI QR Code

화재방호계통 복층구조 스프링클러 파이프라인 내진성능 평가

Evaluation of Seismic Performance of 2-Story Fire Protection Sprinkler Piping System

  • Jeon, Jun-Tai (Department of Civil & Environmental Engineering, INHA Technical College) ;
  • Jung, Woo-Young (Department of Civil Engineering, GangNeung-WonJu National University) ;
  • Ju, Bu-Seog (Department of Civil Engineering, North Carolina State University)
  • 투고 : 2014.07.28
  • 심사 : 2014.09.28
  • 발행 : 2014.09.30

초록

화재방호계통 스프링클러 시스템의 경우 지진 발생 시 그리고 지진 발생 후에 유도되는 화재로부터 건물과 인명을 보호하고 에너지를 공급을 위한 필수 요소라 할 수 있다. 본연구의 주목적은 양방향 (x, y) 그리고 3축(x, y, z)방향의 지진의 영향을 받는 저층 건물에 설치된 복층구조 스프링클러 파이프라인의 거동과 내진성능을 평가 하고자 함이다. 결과적으로 건물의 비구조 요소인 스프링클러 파이프라인의 경우 각 층별로 다른 거동을 보이고 있으며, 또한 수직 방향의 지진의 경우 수평방향의 지진보다 파이프라인에 미치는 영향은 미미하다고 볼 수 있다.

Fire protection (sprinkler) piping system is an essential element for the energy supply and for the protection against the seismic-induced fire during and after an earthquake. The primary objective of this study was to understand the seismic performance of complex two-story piping system installed in a low-rise building subjected to bi-directional and three-directional earthquakes. The result of current study revealed that the displacement of the piping system in accordance with floor level was significantly different due to acceleration-sensitivity but the effect of the piping system due to the vertical direction earthquake was not significant.

키워드

참고문헌

  1. Antaki, G. and Guzy, D. (1998). "Seismic Testing of Grooved and Threaded Fire Protection Joints and Correlation with NFPA Seismic Design Provisions." ASME Seismic Engineering, PVP-Vol. 364, pp.69-75.
  2. Chopra, A. K. (2001). Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pearson Education, Prentice-Hall, Inc. USA.
  3. Ju, B. S. and Jung, W. Y. (2003). "Seismic fragility evaluation of multi-branch piping system installed in critical low-rise buildings." Disaster Advances, Vol.6(4), pp.59-65.
  4. Kircher, C. A. (2003). "It makes dollars and sense to improve nonstructural system performance." Proceeding of seminar on seismic design, performance, and retrofit of nonstructural components in critical facilities, Applied Technology Council-29-2, Newport Beach, California, pp.109-119.
  5. NFPA-13 (2007). Standard for the Installation of Sprinkler System. National Fire Protection Association, MA, 2007 Edition, USA.
  6. OpenSees (2011). Open System for Earthquake Engineering Simulation, available at: http://opensees,berkeley.edu
  7. PEER-NGA (2014). Pacific Earthquake Engineering Research Center: NGA Database, available at: http://peer,berkeley.edu/nga
  8. Sekizawa, A., Ebihara, M., and Notake H. (2002). "Development of Seismic-induced Fire Risk Assessment Method for a Building." Fire Safety Science-Proceedings of the Seventh International Symposium, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, pp309-320.
  9. Tian, Y., Fuchs, J., Mosqueda, G., and Filiatrault, A. (2010). "NEESR Nonstructural: Progress Report on Tests of Tee Joint Component of Sprinkler Piping System." NEESR-GC: Simulation of the Seismic Performance of Nonstructural Systems, University at Buffalo, State University of New York.

피인용 문헌

  1. 경주지진에 의한 곡선교량의 내진 안전성 평가 vol.14, pp.1, 2018, https://doi.org/10.15683/kosdi.2018.03.31.43
  2. 지진격리장치를 적용한 복층구조파이핑 시스템의 내진성능평가 vol.14, pp.4, 2014, https://doi.org/10.15683/kosdi.2018.12.31.450