DOI QR코드

DOI QR Code

유한 요소법을 이용한 히트싱크의 성능평가를 위한 열해석 연구

Thermal Analysis of the Heat Sink Performance using FEM

  • 이봉구 (영남이공대학교 기계계열) ;
  • 이민 (부경대학교 기계공학과)
  • Lee, Bong-Gu (Division of Mechanical Engineering, Yeungnam University College) ;
  • Lee, Min (Graduate School of Mechanical Engineering, Pukyong National University)
  • 투고 : 2014.07.21
  • 심사 : 2014.09.11
  • 발행 : 2014.09.30

초록

최근 전자 및 기계부품 기술의 발전으로 전자 장비는 더욱 고성능화, 소형화, 다기능화 되면서 시스템 내부에 발생하는 발열부의 온도를 제어하기 위해 히트싱크가 사용된다. 본 연구에서는 내부 터널 구조의 2가지 형상의 히트싱크의 열 성능평가를 유한요소 프로그램인 ANSYS를 이용하여 수치해석 하였다. 수치해석은 자연대류 상태에서의 열 성능을 수치해석으로 비교 분석하여 냉각핀 형상에 따른 열 성능을 평가하였다. 또한 시간에 따른 열전달 특성과 온도분표의 해석결과를 기초로 하여 히트싱크의 성능평가를 예측하였다. 수치해석의 결과, 형상 A 히트싱크가 형상 B의 히트싱크보다 열 전달율이 자연대류에서 약 70% 향상되었다.

This study examined the numerical analysis results with respect to the thermal behavior of a natural convection cooled pin-fin heat sink. The heat sink consisted of pin fins integrated with plate fins. The heat sinks were designed with two different types to fit the limited internal space. The two types of heat sinks designed were analyzed using the ANSYS software package, and the numerical analysis results were compared with the cooling performance of the two types of heat sinks. The results of the simulation were analyzed according to the temperature distribution and air flow characteristics, heat flux etc. This study examined the correlation of the cooling performance with the heat sink internal structure and fin shape. FEM (Finite Element Method) confirmed the cooling performance of heat sink type A under natural convection conditions as the best results. The results of the numerical simulation showed that the heat sink type A shape showed an approximately 70 percent better heat transfer rate with natural convection than that of type B.

키워드

참고문헌

  1. Y. Pan, B. Lin, J. Chen, "Performance Analysis and Parametric Optimal Design of an Irreversible Multi-Couple Thermoelectric Refrigerator under various Operating Conditions," Appl. Energy, Vol. 84, pp. 882-892, 2007. DOI: http://dx.doi.org/10.1016/j.apenergy.2007.02.008
  2. Y. G. Gurevich, G. N. Logvinov, "Physics of Thermoelectric Cooling," Semicond Sci. Technol., Vol. 20, pp. 57-64, 2005. DOI: http://dx.doi.org/10.1088/0268-1242/20/12/R01
  3. M. Chen, L. A. Rosendahl, T. Condra, "A Three-dimensional Numerical Model of Thermoelectric Generators in Fluid Power Systems," Int. J. Heat Mass Transfer, Vol. 54 pp. 345-355, 2011. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.08.024
  4. W. H. Chen, C. Y. Liao, C. I. Hung, "A Numerical Study on The Performance of Miniature Thermoelectric Cooler Affected by Thomson Effect," Appl. Energy, Vol. 89 pp. 464-473, 2012. DOI: http://dx.doi.org/10.1016/j.apenergy.2011.08.022
  5. K. H. Lee, O. J. Kim, "Analysis On The Performance of The Thermoelectric Microcooler," Int. J. Heat Mass Transfer, Vol. 50 pp.1982-1992, 2007. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.09.037
  6. J. Luo, L. Chen, F. Sun, C. Wu, "Optimum Allocation of Heat Transfer Surface Area for Cooling Load and COP Optimization of a Thermoelectric Refrigerator," Energy Convers Manage, Vol. 44, pp. 3197-3206, 2003. DOI: http://dx.doi.org/10.1016/S0196-8904(03)00107-9
  7. D. Champier, J. P. Bedecarrats, M. Rivaletto, F. Strub, "Thermoelectric Power Generation from Biomass Cook Stoves," Energy, Vol. 35 935-942, 2010. DOI: http://dx.doi.org/10.1016/j.energy.2009.07.015
  8. D. R. Lee, "Investigation of Optimal Cooling Performance using Peltier Module and Heat Sink," Journal of the korea society for power system engineering, Vol. 10, pp. 65-70, 2006.
  9. S. H. Yu, K. S. Lee, S. J. Yook, "Natural Convection Around a Radial Heat Sink," Int. J. Heat Mass Transfer Vol. 53, pp. 2935-2938, 2010. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.02.032
  10. R. Arularasan, R. Velraj, "Modeling and Simulation of A Parallel Plate Heat Sink using Computational Fluid Dynamics," Int. J. Adv. Manuf. Technol. Vol. 51, pp. 415-419, 2010. DOI: http://dx.doi.org/10.1007/s00170-008-1867-9
  11. B. S. Seo, K. J. Lee, J. K. Yang, Y. S. Cho, D. H. Park, "Development and Characterization of Optimum Heat Sink for 30W Chip on Board LED Down-Light," Transactions on electrical and electronic materials, Vol. 13 pp. 292-296, 2012. https://doi.org/10.4313/TEEM.2012.13.6.292
  12. M. Lee, T. W. Kim, "A Study on the Heat Sink with Internal Structure using Peltier Module in The Natural and Forced Convection," Journal of the Korea Academia-Industrial cooperation Society, Vol. 15 pp. 4072-4080, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.6.3410
  13. M. Lee, T. W. Kim, "A Study on the Heat Sink with Internal Structure using Peltier Module in The Forced Convection," Journal of the Korea Academia-Industrial cooperation Society, Vol. 15 pp. 3410-3415, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.6.3410
  14. P. Teertstra, M. M. Yovanovich, J. R. Culham, "Analytical Forced Convection Modeling Plate Fin Heat Sinks," J. Electronics Manufacturing, Vol. 10, pp. 253-261, 2000. DOI: http://dx.doi.org/10.1142/S0960313100000320
  15. C. T. Chen, H. I. Chen, "Multi-objective Optimization Design of Plate-Fin Heat Sinks using a Direction-Based Genetic Agorithm," Journal of the Taiwan Institute of Chemical Engineers, Vol. 44, pp. 257-265, 2013. DOI: http://dx.doi.org/10.1016/j.jtice.2012.11.012
  16. K. T. Chiang, C. C. Chou, N. M. Liu, "Application of Response Surface Methodology in Describing The Thermal Performances of Pin-Fin Heat Sinks," Int. Journal of Thermal Sciences Vol. 48, pp. 1196-1205, 2009. DOI: http://dx.doi.org/10.1016/j.ijthermalsci.2008.10.009
  17. Y. A. Cengel, "Heat Transfer A Practical Approach 2nd edition" McGraw-Hill, Boston. 2003.
  18. S. B. Park, Y. H Seo, "Die Casting Product Design," Press Technology, Vol. 11, pp. 76-87, 2000.