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Abstract

We consider the problem of scheduling identical jobs with sequence-independent setup times on parallel machines. 

The objective is to minimize total completion times. We present the pseudopolynomial-time algorithm for the case 

with a fixed number of machines and an efficient approximation algorithm for our problem with identical setup times, 

which is known to be NP-hard even for the two-machine case.
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1. Problem Definition

Batch scheduling problems with setup times 

have been studied extensively [2, 3]. In this pa-

per, we consider a particular batch scheduling 

problem that can be stated as follows. Suppose 

we have a set of   jobs to be scheduled on   

parallel machines, where each job belongs to 

some batch. Batch scheduling problems are cha-

racterized by a setup time that is only required 
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between jobs from different batches. Each batch 

g has its own set of   jobs, 
    ⋯  

,     ⋯   Note that ∑    . Let   

be the processing time of ,    ⋯  ,    

  ⋯ . In our problem, the processing time of 

each job is identical, that is,   ,    ⋯, 

 ,     ⋯ . Let   = ( ,  , …,  ) be the 

schedule such that   is the subsequence of jobs 

assigned to machine ,    ⋯ . Let    be 

the -th job in  ,    ⋯ . Let   be the 

completion time of   in . Let   be the setup 

time required to process a job in batch g follow-

ing a job in a different batch. Note that if a job 

follows a member of the same batch, then a setup 

time is not required. The objective is to find a 

schedule   to minimize total completion times, 

  ∑   ∑    
 . Let this problem be re-

ferred to as Problem P.

Cheng and Chen [5] showed that Problem P 

is NP-hard even for the two-machine case with 

unit length jobs, that is,   . Webster [7] 

showed that Problem P is unary NP-hard even 

for the case in which each job of the same batch 

has the same processing time, that is,    . 

Liu et al. [6] considered the two-machine case 

of Problem P and presented a pseudopolyno-

mial-time algorithm for the case with unit length 

jobs and an NP-hardness proof for the case with 

unit length jobs and identical setup times, that 

is,   . Webster and Azzioglu [8] presented two 

dynamic programming algorithms for Problem P 

with arbitrary processing times whose objective 

is to minimize the total weighted flow time. In 

this paper, we present a pseudopolynomial-time 

algorithm with better complexity than that in [8] 

for Problem P with a fixed number of machines 

and an efficient approximation algorithm for 

Problem P with identical setup times.

2. Problem P

In this section, we introduce an optimality con-

dition and present a pseudopolynomial-time al-

gorithm for Problem P with a fixed number of 

machines. 

2.1 Optimality Condition

In this subsection, we present an optimality 

condition that is used later to develop a pseudo-

polynomial-time algorithm.

First, we introduce some terminology and the 

known result. Let batch g be referred to as a split 

batch if it has at least two setups and let the 

schedule with no split batches be referred to as 

a group technology (GT) schedule. Note that in 

the GT schedule, each batch has exactly one 

setup. Consider a schedule   = ( ,  , …,  ) 

such that for    ⋯  :

• Let   be the number of batches allocated 

to  ;

• Let       ⋯     be the sequence 

of the batches allocated to  ;

• Let   
  

  ⋯ 
 , where 

   

is the set of jobs in batch    in  .

Proposition 1 [4] There exists an optimal sche-

dule   for the single-machine case of Problem 

P such that   is a GT schedule and









≤







≤ ⋯ ≤





 ,

where 
  is the cardinality of 

  . Note that 

since this is single-machine case, for simplicity, 

the subscripts of   are deleted.



순서 독립 인 셋업타임을 가진 동일작업의 병렬기계 배치스 링 1   85

Following [4], henceforth, we consider only a 

schedule   with no split job on each machine 

such that, for    ⋯ 

      



 
≤

 

 
≤ ⋯ ≤




  , (1)

where  
   is the cardinality of 

  . Note 

that Proposition 1 does not imply that an optimal 

schedule is a GT schedule. Then,   can be ex-

pressed as 

 
  




  



 
 




 

 



  




 




 

 




 

 (2)

It is observed from equation (2) that if the total 

number of jobs allocated to each machine is 

fixed,   is determined by the combination of 

the number of jobs processed after each setup 

time.

Lemma 1 Let       be the bipartite 

graph corresponding to a feasible schedule   

defined as follows :

•  ⋯   is the set of machines and    

⋯   is the set of batches;

•∈   if some job of batch   is processed 
on machine v in .

Then, Problem P has an optimal schedule   

with no cycle in  .

Proof Suppose that an optimal schedule   has 

a cycle   in  . Without loss of generality, the 

cycle   can be represented as

    ⋯  ,

where ∈ and ∈,   ⋯ . Let     be 
the set of jobs in 

 
  allocated to    

  ⋯ . For consistency of notation, let   . 

Let   be a schedule identical to   except that 

the last job in 
 is moved immediately after 

the last job in 
 ,    ⋯ . Let   be a 

schedule identical to   except that the last job 

in 
   is moved immediately after the last job 

in 
     ⋯ . Note that, for simplicity, let 


   

. Then, we can show that  ≤.

To do so, we introduce the following additional 

notation :

•Let   be the set of batches between batches 

    and   in  ,    ⋯ , respectively;

•Under  , let   and   be the number of 

jobs after the last job in 
  and 

,    

 ⋯ , respectively;

•For    ⋯ , let














  

     →  

   
       →

 

and

 














  

       →

   
     →   

 

where    →   means that batch     is proc-

essed before batch  . For    ⋯ ,

 








      →

    →   
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Then,

     and     ,

where

 


  



 ∈

 

∈
 



and

 


  



  ∈

 

∈
 



Since   is an optimal schedule, the following 

inequalities should be satisfied :

≥   and ≥.    (3)

Let  ∑    ∑∈  ∑∈   

. Then, by inequalities (3) and the defini-

tions of   and ,

≤
  



 ≤
≤

  



 ≤


Since ,

   
  



 ≤


By repeatedly applying the argument used for  , 

we can construct a new schedule   such that 

  ≤  and 
  does not contain C. The proof 

is complete. ■

2.2 Pseudopolynomial-time Algorithm

In this subsection, we develop a pseudopoly-

nomial-time algorithm for Problem P with a fixed 

number of machines. First, we consider the pro-

blem of finding an optimal schedule among GT 

schedules. Let this problem be referred to as 

Problem PGT.

Lemma 2 Problem PGT can be solved in time 

 .

Proof For simplicity, let the batches be indexed 

in non-decreasing order of 
 , that is,




≤ 


≤ ⋯ ≤

 .

When   jobs are processed on machine   while the 

schedule is being constructed, let batch   be pro-

cessed before the first job on machine . Then, it 

is observed that

•The completion time of job   is  ;

•The total completion time of jobs in batch   

is   

  

•The total completion time of jobs after batch 

  is increased by   .

Based on these observations, we reduce Problem 

PGT into the shortest path problem in an acyclic 

graph. Let    ⋯    be the node that rep-

resents the following :

•The machines on which the batches in    

⋯   are processed have been determined;

•   is the number of jobs allocated to machine , 

   ⋯ .

Let s := 
 
 ⋯   and   be the source and 

sink nodes, respectively. For    ⋯   and     
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⋯   let   ⋯    be connected to   

 ⋯
   with weight   

       

, if      and ′ ′  for each ′∈   
⋯ ╲. This edge denotes that batch   is 

processed before the first job on machine . Let 

   ⋯    be connected to   with weight 0.

It is clear that the   shortest path of the re-

duced graph represents an optimal schedule for 

Problem PGT. Since the reduced graph is acyclic 

and the number of edges is  , the   

shortest path can be found in    by the al-

gorithm in [1]. The proof is complete. ■

It is observed from Lemma 1 that, in Problem 

P, there exists an optimal schedule with at most 

  split batches, each of which can be proce-

ssed on at most   machines. Let   ⋯      

be the combination such that     ⋯    

is the vector of sub-batches of batch  . Let   

be the number of the jobs in sub-batch   allo-

cated to machine . Note that   can become 

zero for some . This implies that no jobs in batch 

  are allocated to machine . For each combina-

tion (  ⋯  ), we can construct Problem PGT, 

where sub-batches are regarded as different bat-

ches. Note that if ≠′ , then sub-batches   and 
′  are regarded as different batches in the 
Problem PGT. Let ′  be the number of batches 
in Problem PGT. Then, by Lemma 1, 

′≤≤ .     (4)

It is observed that the optimal schedule of 

Problem IP is identical to the schedule with the 

minimum total completion times among the opti-

mal schedules of each combination. Based on this 

observation, we can construct the following al-

gorithm.

Algorithm ALG

Step 1 For each combination   ⋯    , 

construct the corresponding Problem PGT.

Step 2 For each Problem PGT, obtain an optimal 

schedule by using the approach in Lem-

ma 2.

Step 3 Select the schedule with the minimum to-

tal completion time.

Note that since the number of combinations   

 ⋯     is       and the number 
of combinations   ⋯    is 

     for 

each batch      ⋯ , the total number 

of combinations can be calculated as follows :

 
  

  


       


  





Furthermore, by Lemma 2 and inequality (4), 

each Problem PGT can be solved in ′. 
Thus, Algorithm ALG terminates in   

 

   




Theorem 1 Problem P can be solved in pseudo-

polynomial-time when the number of machines 

is fixed.

Proof To encode Problem P, we just need the 

setup time of each batch, the number of jobs be-

longing to each batch and the processing time. 

Thus, the order of the input size is      

      where    ⋯   and 

  ⋯ . The complexity of Algori-

thm ALG is pseudopolynomial when the number 

of machines is fixed. ■



88 최병천․박명주

Remark 1  When we apply dynamic program-

ming algorithms [8] for Problem P, their com-

plexities are         and     

 , respectively, where     and    

∑    . Since they are pseudopolynomial-times 

only if the numbers of machines and batches are 

fixed, Algorithm ALG is more efficient.

3. Problem P with Identical 
Setup Times

In this section, we consider Problem P with 

identical setup times, that is,   ,     ⋯ . 

Since Problem P is NP-hard even for the two- 

machine case with identical setup times and unit 

processing times [6], we propose an approx-

imation algorithm for Problem P with identical 

setup times. Without loss of generality, assume 

that the batches are indexed in non-increasing 

order of  , that is,

 ≥ ≥ ⋯ ≥

Since the setup times are identical, equation (2) 

can be rewritten as

  
  




  




 




  



  



  ,

where  ∑   
   Since∑   ∑   ∑   

   

∑   ∑   
 , however,   can be rewritten 

as

  
  




 




  



  



      (5)

Note that the objective function (5) consists of 

two parts. Let

  
  




 




   and   



  



  

To develop an approximation algorithm, we 

introduce additional notation. Let   and   be the 

quotient and remainder, respectively, when   is 

divided by , that is,     Consider a GT 

schedule   ⋯    as follows :

 








    ⋯       ⋯ 

    ⋯        ⋯ 
(6)

Let   and   be the quotient and remainder, re-

spectively, when   is divided by , that is,   

. Let

 








     ⋯ 

     ⋯ 

We present an approximation algorithm for Pro-

blem P with identical setup times. The under-

lying idea is to modify   into a schedule such 

that the number of jobs processed on machine 

  is exactly      ⋯ 

Algorithm APP

Step 1 Sort the batches by the decreasing order 

of the number of jobs and let  ∅.

Step 2 Construct a schedule    ⋯  , de-

fined in (6).

•Let   be the number of jobs on machine   in 

    ⋯ .

•Let   be the index such that      ⋯  

  and ≤     ⋯ .

Step 3 For    ⋯  , move the first     

jobs from   into   and sort the jobs by 
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increasing batch index.

Step 4 For       ⋯ , sequence the 

first      jobs from   before the first 

job in  .

Step 5 Output a new schedule.

Note that since sorting batches in Step 1 and Steps 

2～4 requires     and   times, respec-

tively, Algorithm APP terminates in     

time.

Lemma 3 ≤

Proof Consider two cases.

    is a GT schedule

Suppose that ≠. Let   be the smallest 

index in   such that batch   is not processed 

on machine . Without loss of generality, assume 

that batch   is processed on machine ′  in . 
Note that ′≠. It is observed from relation (1) 
that batch   is processed at the -th po-

sition or later on machine ′  in . Let batch   
be the -th batch on machine   in . We can 

make a new schedule   by exchanging the posi-

tions of batches   and . Since    ≥ , 

it is observed that  ≤. By repeatedly ap-

plying the argument above, we can attain a 

schedule   and thus ≤.

    is not a GT schedule

Suppose batch   is processed on machines   

and ′  in . Let batch   be the -th and ′-th 
batches in   and ′ , respectively. Without loss 
of generality, assume that  ≥′. Then, we con-
struct a new schedule   by moving all the jobs 

of batch   on machine   immediately after batch 

g on machine ′. Then,

    ′  
  




  ≤.

By repeatedly applying the argument above, 

we can attain a GT schedule   and thus ≤ 

≤by case .

By cases   and , the proof is complete. ■

Theorem 2 Let   be the schedule obtained by 

Algorithm APP. Then,

 


≤ 




Proof For   in ∈   ⋯ , let  ⋯  
   be the subsequence of the batches moved 

to machine   by Step 4 of Algorithm APP.

Claim ∑     ≤
 

Proof It is observed from the construction of   

that  ≥  ≥ ⋯ ≥  and

   ≥  ≥     ⋯  . (7)

Inequality (7) implies the following :

•Since the first     jobs of   belong to batch 

,    ⋯  , the set of batches in   after 

Step 3 is   ⋯ ;

•Since batch 1 is always sequenced at the first 

position, it does not belong to   ⋯     

for   ⋯ .

Furthermore, it is observed from the way to se-

quence jobs in Step 4 that if ≠′ , then    
⋯    and ′ ⋯ ′′  are disjoint. By 
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the implications above and this observation,


  



   
   



  ⋯
 

  
   



  ⋯
  ≤



The proof is complete. □

By Claim,


  



  ≤ 
   



  

≤  ≤
  





(8)

We, henceforth, introduce four relations to derive 

the bound.

  When   is transformed into   by Algorithm 

APP,   is increased by at most ∑     . 

Thus, by inequality (8),

≤ 
   



   
   



  
   



 
≤ 

   



 
  



  ≤ . (9)

  By Lemma 3,  ≥
 ∑       and the 

way to construct ,

        ≥


  



  

 

(10)

  Since ∑       ≥∑  






,

   


  



  ≥ 


  
















(11)

  Let ′  be the number of batches allocated to 
  and let ′  ′  ′  ⋯ ′ ′   be the 
sequence of batches allocated to  ,     

⋯ . Then,

   
  




 

′

 ′ ≥

  




 

′

 ′  . (12)

Then, by inequalities (9)～(12),




≤






 






≤









 




 

The proof is complete. ■
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