
http://dx.doi.org/10.7737/JKORMS.2014.39.3.083

논문 수일：2014년 06월 20일 논문게재확정일：2014년 08월 06일

논문수정일(1차：2014년 08월 05일)

* This study was financially supported by the research fund of Chungnam National University in 2014.

†교신 자 pmj0684@khu.ac.kr

순서 독립 인 셋업타임을 가진 동일작업의

병렬기계 배치스 링*

최병천
1
․박명주

2†

1
충남 학교 경 학부,

2
경희 학교 산업경 공학과

Parallel Machine Scheduling with Identical Jobs and

Sequence-Independent Setup Times

Byung-Cheon Choi1․Myoung-Ju Park2

1
Department of Business Administration, Chungnam National University

2
Department of Industrial and Management Systems Engineering, Kyung Hee University

Abstract

We consider the problem of scheduling identical jobs with sequence-independent setup times on parallel machines.

The objective is to minimize total completion times. We present the pseudopolynomial-time algorithm for the case

with a fixed number of machines and an efficient approximation algorithm for our problem with identical setup times,

which is known to be NP-hard even for the two-machine case.

Keywords：Batch Scheduling, Setup Times, Parallel Machine

1. Problem Definition

Batch scheduling problems with setup times

have been studied extensively [2, 3]. In this pa-

per, we consider a particular batch scheduling

problem that can be stated as follows. Suppose

we have a set of jobs to be scheduled on

parallel machines, where each job belongs to

some batch. Batch scheduling problems are cha-

racterized by a setup time that is only required

한국경 과학회지
제39권 제3호
2014년 9월

84 최병천․박명주

between jobs from different batches. Each batch

g has its own set of jobs,
 ⋯

, ⋯ Note that ∑ . Let

be the processing time of , ⋯ ,

 ⋯ . In our problem, the processing time of

each job is identical, that is, , ⋯,

 , ⋯ . Let = (, , …,) be the

schedule such that is the subsequence of jobs

assigned to machine , ⋯ . Let be

the -th job in , ⋯ . Let be the

completion time of in . Let be the setup

time required to process a job in batch g follow-

ing a job in a different batch. Note that if a job

follows a member of the same batch, then a setup

time is not required. The objective is to find a

schedule to minimize total completion times,

 ∑ ∑
 . Let this problem be re-

ferred to as Problem P.

Cheng and Chen [5] showed that Problem P

is NP-hard even for the two-machine case with

unit length jobs, that is, . Webster [7]

showed that Problem P is unary NP-hard even

for the case in which each job of the same batch

has the same processing time, that is, .

Liu et al. [6] considered the two-machine case

of Problem P and presented a pseudopolyno-

mial-time algorithm for the case with unit length

jobs and an NP-hardness proof for the case with

unit length jobs and identical setup times, that

is, . Webster and Azzioglu [8] presented two

dynamic programming algorithms for Problem P

with arbitrary processing times whose objective

is to minimize the total weighted flow time. In

this paper, we present a pseudopolynomial-time

algorithm with better complexity than that in [8]

for Problem P with a fixed number of machines

and an efficient approximation algorithm for

Problem P with identical setup times.

2. Problem P

In this section, we introduce an optimality con-

dition and present a pseudopolynomial-time al-

gorithm for Problem P with a fixed number of

machines.

2.1 Optimality Condition

In this subsection, we present an optimality

condition that is used later to develop a pseudo-

polynomial-time algorithm.

First, we introduce some terminology and the

known result. Let batch g be referred to as a split

batch if it has at least two setups and let the

schedule with no split batches be referred to as

a group technology (GT) schedule. Note that in

the GT schedule, each batch has exactly one

setup. Consider a schedule = (, , …,)

such that for ⋯ :

• Let be the number of batches allocated

to ;

• Let ⋯ be the sequence

of the batches allocated to ;

• Let

 ⋯
 , where

is the set of jobs in batch in .

Proposition 1 [4] There exists an optimal sche-

dule for the single-machine case of Problem

P such that is a GT schedule and

≤

≤ ⋯ ≤

 ,

where
 is the cardinality of

 . Note that

since this is single-machine case, for simplicity,

the subscripts of are deleted.

순서 독립 인 셋업타임을 가진 동일작업의 병렬기계 배치스 링 1 85

Following [4], henceforth, we consider only a

schedule with no split job on each machine

such that, for ⋯

≤

≤ ⋯ ≤

 , (1)

where
 is the cardinality of

 . Note

that Proposition 1 does not imply that an optimal

schedule is a GT schedule. Then, can be ex-

pressed as

 (2)

It is observed from equation (2) that if the total

number of jobs allocated to each machine is

fixed, is determined by the combination of

the number of jobs processed after each setup

time.

Lemma 1 Let be the bipartite

graph corresponding to a feasible schedule

defined as follows :

• ⋯ is the set of machines and

⋯ is the set of batches;

•∈ if some job of batch is processed
on machine v in .

Then, Problem P has an optimal schedule

with no cycle in .

Proof Suppose that an optimal schedule has

a cycle in . Without loss of generality, the

cycle can be represented as

 ⋯ ,

where ∈ and ∈, ⋯ . Let be
the set of jobs in

 allocated to

 ⋯ . For consistency of notation, let .

Let be a schedule identical to except that

the last job in
 is moved immediately after

the last job in
 , ⋯ . Let be a

schedule identical to except that the last job

in
 is moved immediately after the last job

in
 ⋯ . Note that, for simplicity, let

. Then, we can show that ≤.

To do so, we introduce the following additional

notation :

•Let be the set of batches between batches

 and in , ⋯ , respectively;

•Under , let and be the number of

jobs after the last job in
 and

,

 ⋯ , respectively;

•For ⋯ , let

 →

 →

and

 →

 →

where → means that batch is proc-

essed before batch . For ⋯ ,

 →

 →

86 최병천․박명주

Then,

 and ,

where

 ∈

∈

and

 ∈

∈

Since is an optimal schedule, the following

inequalities should be satisfied :

≥ and ≥. (3)

Let ∑ ∑∈ ∑∈

. Then, by inequalities (3) and the defini-

tions of and ,

≤

 ≤
≤

 ≤

Since ,

 ≤

By repeatedly applying the argument used for ,

we can construct a new schedule such that

 ≤ and
 does not contain C. The proof

is complete. ■

2.2 Pseudopolynomial-time Algorithm

In this subsection, we develop a pseudopoly-

nomial-time algorithm for Problem P with a fixed

number of machines. First, we consider the pro-

blem of finding an optimal schedule among GT

schedules. Let this problem be referred to as

Problem PGT.

Lemma 2 Problem PGT can be solved in time

 .

Proof For simplicity, let the batches be indexed

in non-decreasing order of
 , that is,

≤

≤ ⋯ ≤

 .

When jobs are processed on machine while the

schedule is being constructed, let batch be pro-

cessed before the first job on machine . Then, it

is observed that

•The completion time of job is ;

•The total completion time of jobs in batch

is

•The total completion time of jobs after batch

 is increased by .

Based on these observations, we reduce Problem

PGT into the shortest path problem in an acyclic

graph. Let ⋯ be the node that rep-

resents the following :

•The machines on which the batches in

⋯ are processed have been determined;

• is the number of jobs allocated to machine ,

 ⋯ .

Let s :=

 ⋯ and be the source and

sink nodes, respectively. For ⋯ and

순서 독립 인 셋업타임을 가진 동일작업의 병렬기계 배치스 링 1 87

⋯ let ⋯ be connected to

 ⋯
 with weight

, if and ′ ′ for each ′∈
⋯ ╲. This edge denotes that batch is

processed before the first job on machine . Let

 ⋯ be connected to with weight 0.

It is clear that the shortest path of the re-

duced graph represents an optimal schedule for

Problem PGT. Since the reduced graph is acyclic

and the number of edges is , the

shortest path can be found in by the al-

gorithm in [1]. The proof is complete. ■

It is observed from Lemma 1 that, in Problem

P, there exists an optimal schedule with at most

 split batches, each of which can be proce-

ssed on at most machines. Let ⋯

be the combination such that ⋯

is the vector of sub-batches of batch . Let

be the number of the jobs in sub-batch allo-

cated to machine . Note that can become

zero for some . This implies that no jobs in batch

 are allocated to machine . For each combina-

tion (⋯), we can construct Problem PGT,

where sub-batches are regarded as different bat-

ches. Note that if ≠′ , then sub-batches and
′ are regarded as different batches in the
Problem PGT. Let ′ be the number of batches
in Problem PGT. Then, by Lemma 1,

′≤≤ . (4)

It is observed that the optimal schedule of

Problem IP is identical to the schedule with the

minimum total completion times among the opti-

mal schedules of each combination. Based on this

observation, we can construct the following al-

gorithm.

Algorithm ALG

Step 1 For each combination ⋯ ,

construct the corresponding Problem PGT.

Step 2 For each Problem PGT, obtain an optimal

schedule by using the approach in Lem-

ma 2.

Step 3 Select the schedule with the minimum to-

tal completion time.

Note that since the number of combinations

 ⋯ is and the number
of combinations ⋯ is

 for

each batch ⋯ , the total number

of combinations can be calculated as follows :

Furthermore, by Lemma 2 and inequality (4),

each Problem PGT can be solved in ′.
Thus, Algorithm ALG terminates in

Theorem 1 Problem P can be solved in pseudo-

polynomial-time when the number of machines

is fixed.

Proof To encode Problem P, we just need the

setup time of each batch, the number of jobs be-

longing to each batch and the processing time.

Thus, the order of the input size is

 where ⋯ and

 ⋯ . The complexity of Algori-

thm ALG is pseudopolynomial when the number

of machines is fixed. ■

88 최병천․박명주

Remark 1 When we apply dynamic program-

ming algorithms [8] for Problem P, their com-

plexities are and

 , respectively, where and

∑ . Since they are pseudopolynomial-times

only if the numbers of machines and batches are

fixed, Algorithm ALG is more efficient.

3. Problem P with Identical
Setup Times

In this section, we consider Problem P with

identical setup times, that is, , ⋯ .

Since Problem P is NP-hard even for the two-

machine case with identical setup times and unit

processing times [6], we propose an approx-

imation algorithm for Problem P with identical

setup times. Without loss of generality, assume

that the batches are indexed in non-increasing

order of , that is,

 ≥ ≥ ⋯ ≥

Since the setup times are identical, equation (2)

can be rewritten as

 ,

where ∑
 Since∑ ∑ ∑

∑ ∑
 , however, can be rewritten

as

 (5)

Note that the objective function (5) consists of

two parts. Let

 and

To develop an approximation algorithm, we

introduce additional notation. Let and be the

quotient and remainder, respectively, when is

divided by , that is, Consider a GT

schedule ⋯ as follows :

 ⋯ ⋯

 ⋯ ⋯
(6)

Let and be the quotient and remainder, re-

spectively, when is divided by , that is,

. Let

 ⋯

 ⋯

We present an approximation algorithm for Pro-

blem P with identical setup times. The under-

lying idea is to modify into a schedule such

that the number of jobs processed on machine

 is exactly ⋯

Algorithm APP

Step 1 Sort the batches by the decreasing order

of the number of jobs and let ∅.

Step 2 Construct a schedule ⋯ , de-

fined in (6).

•Let be the number of jobs on machine in

 ⋯ .

•Let be the index such that ⋯

 and ≤ ⋯ .

Step 3 For ⋯ , move the first

jobs from into and sort the jobs by

순서 독립 인 셋업타임을 가진 동일작업의 병렬기계 배치스 링 1 89

increasing batch index.

Step 4 For ⋯ , sequence the

first jobs from before the first

job in .

Step 5 Output a new schedule.

Note that since sorting batches in Step 1 and Steps

2～4 requires and times, respec-

tively, Algorithm APP terminates in

time.

Lemma 3 ≤

Proof Consider two cases.

 is a GT schedule

Suppose that ≠. Let be the smallest

index in such that batch is not processed

on machine . Without loss of generality, assume

that batch is processed on machine ′ in .
Note that ′≠. It is observed from relation (1)
that batch is processed at the -th po-

sition or later on machine ′ in . Let batch
be the -th batch on machine in . We can

make a new schedule by exchanging the posi-

tions of batches and . Since ≥ ,

it is observed that ≤. By repeatedly ap-

plying the argument above, we can attain a

schedule and thus ≤.

 is not a GT schedule

Suppose batch is processed on machines

and ′ in . Let batch be the -th and ′-th
batches in and ′ , respectively. Without loss
of generality, assume that ≥′. Then, we con-
struct a new schedule by moving all the jobs

of batch on machine immediately after batch

g on machine ′. Then,

 ′

 ≤.

By repeatedly applying the argument above,

we can attain a GT schedule and thus ≤

≤by case .

By cases and , the proof is complete. ■

Theorem 2 Let be the schedule obtained by

Algorithm APP. Then,

≤

Proof For in ∈ ⋯ , let ⋯
 be the subsequence of the batches moved

to machine by Step 4 of Algorithm APP.

Claim ∑ ≤

Proof It is observed from the construction of

that ≥ ≥ ⋯ ≥ and

 ≥ ≥ ⋯ . (7)

Inequality (7) implies the following :

•Since the first jobs of belong to batch

, ⋯ , the set of batches in after

Step 3 is ⋯ ;

•Since batch 1 is always sequenced at the first

position, it does not belong to ⋯

for ⋯ .

Furthermore, it is observed from the way to se-

quence jobs in Step 4 that if ≠′ , then
⋯ and ′ ⋯ ′′ are disjoint. By

90 최병천․박명주

the implications above and this observation,

 ⋯

 ⋯
 ≤

The proof is complete. □

By Claim,

 ≤

≤ ≤

(8)

We, henceforth, introduce four relations to derive

the bound.

 When is transformed into by Algorithm

APP, is increased by at most ∑ .

Thus, by inequality (8),

≤

≤

 ≤ . (9)

 By Lemma 3, ≥
 ∑ and the

way to construct ,

 ≥

(10)

 Since ∑ ≥∑

,

 ≥

(11)

 Let ′ be the number of batches allocated to
 and let ′ ′ ′ ⋯ ′ ′ be the
sequence of batches allocated to ,

⋯ . Then,

′

 ′ ≥

′

 ′ . (12)

Then, by inequalities (9)～(12),

≤

≤

The proof is complete. ■

References

[1] Ahuja, R.A., K. Mehlhorn, and J.B. Orlin,

“Faster algorithm for the shortest path pro-

blem,” Journal of the Association for Com-

puting Machinery, Vol.37(1990), pp.213-223.

[2] Allahverdi, A., J.N.D. Gupta, and T. Aldowaisan,

“A review of scheduling research involving

setup considerations,” Omega, Vol.27(1999),

pp.219-239.

[3] Allahverdi, A., C.T. Ng, T.C.E. Cheng, and

M.Y. Kovalyov, “A survey of scheduling pro-

blems with setup times or costs,” European

Journal of Operational Research, Vol.187(2008),

pp.985-1032.

[4] Baker, K.R. and D. Trietsch, Principles of

Scheduling and Sequencing, John Wiley and

순서 독립 인 셋업타임을 가진 동일작업의 병렬기계 배치스 링 1 91

Sons, Inc, 2009.

[5] Cheng, T.C.E. and Z.L. Chen, “Parallel ma-

chine scheduling with batch setup times,”

Operations Research, Vol.42(1994), pp.1171-

1174.

[6] Liu, Z., W. Yu, and T.C.E. Cheng, “Scheduling

groups of unit length jobs on two identical

parallel machines,” Information Processing

Letters, Vol.69(1999), pp.275-281.

[7] Webster, S.T., “The complexity of scheduling

job families about a common due date,” Ope-

rations Research Letters, Vol.20(1997), pp.

65-74.

[8] Webster, S.T. and M. Azzioglu, “Dynamic pro-

gramming algorithms for scheduling parallel

machines with family setup times,” Compu-

ters and Operations Research, Vol.28(2001),

pp.127-137.

