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A CONTINUOUS HÖLDER INEQUALITY ON

MORREY SPACES

Ern Gun Kwon and Eun Kyu Bae

Abstract. A continuous form of Hölder inequality is established on the

settings of Morrey spaces.

1. Introduction

1.1. Hölder’s inequality

Let Y = (Y, ν) be a measure spaces with positive measure ν. Classical
Hölder inequality (see [5], for example) says that∫

Y

f1(y)pf2(y)1−pdν(y) ≤
(∫

Y

f1(y) dν(y)

)p(∫
Y

f2(y) dν(y)

)1−p

, (1.1)

where f1 and f2 are positive functions of L1(Y ) and 0 ≤ p ≤ 1.
It is well-known fact that (1.1) can be extended to the case of a multiple

product of functions (see [1], [2], etc.), and even to a continuous version (see
[3]) as the following

Theorem A. Let X = (X,µ) and Y = (Y, ν) be σ-finite measure spaces with
positive measures µ and ν, and denote µ× ν the product measure of µ and ν.
If µ(X) = 1 and if f(x, y) is a positive measurable function defined on X × Y ,
then ∫

Y

exp

(∫
X

log f dµ

)
dν ≤ exp

{∫
X

log

(∫
Y

f dν

)
dµ

}
. (1.2)

Remark. Theorem A may be regarded as a generalization of (1.1). In fact,
for 0 ≤ p ≤ 1 if we take

X = {1, 2} and dµ =
{
pχ{1} + (1− p)χ{2}

}
dm,
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dm the counting measure, χ{.} the corresponding characteristic functions, and
f(k, y) = fk(y), k ∈ X, then (1.2) reduces to (1.1):∫

Y

f1(y)pf2(y)1−p dν(y) =

∫
Y

exp

(∫
X

log fk(y) dµ(k)

)
dν(y)

≤ exp

{∫
X

log

(∫
Y

fk(y) dν(y)

)
dµ(k)

}
=

(∫
Y

f1(y) dν(y)

)p(∫
Y

f2(y) dν(y)

)1−p

.

1.2. Morrey spaces

Morrey space was introduced in the course of estimating the solution of
partial differential equations in [4].

Definition 1. For 0 < p < ∞ and 0 ≤ λ ≤ n, Morrey space Lp,λ(Rn) is
defined by

Lp,λ(Rn) = {f ∈ Lploc(R
n) : ‖f‖Lp,λ < +∞},

where

‖f‖Lp,λ = sup
B

(
1

rλ

∫
B

|f(x)|pdx
) 1
p

and the supremum is taken over all ball B = B(a, r) = {x ∈ Rn : |x− a| < r}
with center a and radius r > 0.

Lp,λ(Rn) is a Fréchet space, and a Banach space if p ≥ 1. If λ = 0, then
Lp,λ(Rn) = Lp(Rn). If λ = n, then Lp,λ(Rn) = L∞(Rn) by Lebesgue differen-
tiation theorem (see [6]).

1.3. Hölder inequality for Morrey spaces

For 1/p1 + 1/p2 = 1 and λ1/p1 + λ2/p2 = λ, simple application of classical
Hölder inequality of the form (1.1) gives a discrete form of Hölder inequality
for Morrey space version:

‖fg‖Lp,λ ≤ ‖f‖Lp1,λ1‖g‖Lp2,λ2 . (1.3)

1.4. Goal of this paper

We establish a continuous form of Hölder inequality on the settings of Morrey
spaces. This will be done in Section 2 and proved in Section 3.

2. A continuous form of Hölder inequality on the settings of
Morrey spaces

2.1. Main result

As the main result of this paper, we establish the following theorem which
may be regarded as a continuous form of Hölder inequality on Morrey spaces.
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Theorem 2.1. Let X = (X,µ) be a probability measure space with positive
measure µ. Let 0 ≤ λ(x) ≤ n for all x ∈ X. Then for any p : 0 < p < ∞ and
each measurable function F : X × Rn → [0,∞),∥∥∥∥ exp

(∫
X

logF (x, y)dµ(x)

)∥∥∥∥
Lp,λ(Rn)

≤ exp

(∫
X

log ‖Fx‖Lp,λ(x)(Rn)dµ(x)

)
,

(2.1)
where Fx(y) = F (x, y), y ∈ Rn.

2.2. Discrete form as a Corollary

As a corollary, we have a discrete form of Hölder inequality for Morrey spaces
which is a natural generalization of (1.3).

Corollary 2.2. Let 0 < p < ∞, 0 ≤ λ ≤ n, 0 < pk < ∞, 0 ≤ λk ≤ n,

k = 1, 2, . . . , N , and
∑N
k=1

1
pk

= 1
p ,
∑N
k=1

λk
pk

= λ
p . If fk ∈ Lpk,λk(Rn), k =

1, 2, ..., N , then

‖
N∏
k=1

fk‖Lp,λ(Rn) ≤
N∏
k=1

‖fk‖Lpk,λk (Rn). (2.2)

3. Proofs

3.1. Proof of Theorem 2.1

Fix B = B(a, r) for a moment and set dν(y) = dy/rλ. Let f(x, y) =
rλ−λ(x)F (x, y)p for a p : 0 < p < ∞. Then f is a measurable function on
(X,µ)× (B, ν). Since X and B are σ-finite, Theorem A guarantees

1

rλ

∫
B

exp

(∫
X

log f(x, y) dµ(x)

)
dy

≤ exp

{∫
X

log

(
1

rλ

∫
B

f(x, y) dy

)
dµ(x)

}
,

(3.1)

and simple calculation shows that (3.1) becomes

1

rλ

∫
B

exp

(∫
X

logF (x, y)p dµ(x)

)
dy

≤ exp

{∫
X

log

(
1

rλ(x)

∫
B

F (x, y)p dy

)
dµ(x)

}
,

which is equivalent to[
1

rλ

∫
B

{
exp

(∫
X

logF (x, y) dµ(x)

)}p
dy

]1/p
≤ exp

{∫
X

log

(
1

rλ(x)

∫
B

F (x, y)p dy

)1/p

dµ(x)

}
.

(3.2)
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Note, since F is measurable on X × Rn, that (3.2) holds for any B = B(a, r).
Now, taking the supremum for all B = B(a, r) on both sides of (3.2) we obtain
(2.1).

3.2. Proof of Corollary 2.2

We may assume p = 1. Let X = {1, 2, ..., N} and

dµ(x) =

N∑
k=1

1

pk
χ{k}(x) dm(x),

where dm and χ{·} denote the counting measure and the characteristic function
of the set{·} respectively. Then,

µ(X) =

∫
X

dµ(x) =

∫
{1,2,...,N}

N∑
k=1

1

pk
χ{k}(x) dm(x) =

N∑
k=1

1/pk = 1

and ∫
X

λ(x) dµ(y) =

∫
{1,2,...,N}

λ(x)

N∑
k=1

1

pk
χ(x) dm(x) =

N∑
k=1

λk
pk

= λ.

Thus, if we set F (x, y) = |f(x, y)|px , x ∈ X, y ∈ Rn, then Theorem 2.1 gives
(2.1) with f in place of F . Therefore, we get

‖
N∏
k=1

fk‖L1,λ(Rn) =

∥∥∥∥∥
N∏
k=1

F
1/pk
k

∥∥∥∥∥
L1,λ(Rn)

=

∥∥∥∥∥ exp

(
N∑
k=1

1

pk
logFk(y)

)∥∥∥∥∥
L1,λ(Rn)

=

∥∥∥∥∥ exp

(∫
{1,2,...,N}

N∑
k=1

1

pk
χ{k}(x) logFx(y) dm(x)

)∥∥∥∥∥
L1,λ(Rn)

=

∥∥∥∥ exp

(∫
X

log f(x, y) dµ(x)

)∥∥∥∥
L1,λ(Rn)

≤ exp

(∫
X

log ‖fx‖L1,λ(x)(Rn) dµ(x)

)
= exp

(∫
{1,2,...,N}

N∑
k=1

1

pk
χ{k}(x) log ‖Fx(y)‖L1,λ(x)(Rn) dm(x)

)

= exp

(
N∑
k=1

1

pk
log ‖Fk‖L1,λk (Rn)

)
=

N∏
k=1

‖Fk‖1/pkL1,λk (Rn)

=

N∏
k=1

‖fk‖Lpk,λk (Rn),
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which gives (2.2).
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