East Asian Math. J. Vol. 30 (2014), No. 5, pp. 625–629 http://dx.doi.org/10.7858/eamj.2014.042

A CONTINUOUS HÖLDER INEQUALITY ON MORREY SPACES

Ern Gun Kwon and Eun Kyu Bae

ABSTRACT. A continuous form of Hölder inequality is established on the settings of Morrey spaces.

1. Introduction

1.1. Hölder's inequality

Let $Y = (Y, \nu)$ be a measure spaces with positive measure ν . Classical Hölder inequality (see [5], for example) says that

$$\int_{Y} f_1(y)^p f_2(y)^{1-p} d\nu(y) \le \left(\int_{Y} f_1(y) \ d\nu(y)\right)^p \left(\int_{Y} f_2(y) \ d\nu(y)\right)^{1-p}, \quad (1.1)$$

where f_1 and f_2 are positive functions of $L^1(Y)$ and $0 \le p \le 1$.

It is well-known fact that (1.1) can be extended to the case of a multiple product of functions (see [1], [2], etc.), and even to a continuous version (see [3]) as the following

Theorem A. Let $X = (X, \mu)$ and $Y = (Y, \nu)$ be σ -finite measure spaces with positive measures μ and ν , and denote $\mu \times \nu$ the product measure of μ and ν . If $\mu(X) = 1$ and if f(x, y) is a positive measurable function defined on $X \times Y$, then

$$\int_{Y} \exp\left(\int_{X} \log f \ d\mu\right) d\nu \le \exp\left\{\int_{X} \log\left(\int_{Y} f \ d\nu\right) d\mu\right\}.$$
 (1.2)

Remark. Theorem A may be regarded as a generalization of (1.1). In fact, for $0 \le p \le 1$ if we take

$$X = \{1, 2\} \text{ and } d\mu = \{p\chi_{\{1\}} + (1-p)\chi_{\{2\}}\} dm,$$

©2014 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

625

Received May 9, 2014; Accepted September 17, 2014.

 $^{2000\} Mathematics\ Subject\ Classification.\ 26D15.$

Key words and phrases. Hölder inequality, Morrey space.

This work was financially supported by NRF-2010-0021986.

dm the counting measure, $\chi_{\{.\}}$ the corresponding characteristic functions, and $f(k, y) = f_k(y), \ k \in X$, then (1.2) reduces to (1.1):

$$\int_{Y} f_1(y)^p f_2(y)^{1-p} d\nu(y) = \int_{Y} \exp\left(\int_X \log f_k(y) d\mu(k)\right) d\nu(y)$$
$$\leq \exp\left\{\int_X \log\left(\int_Y f_k(y) d\nu(y)\right) d\mu(k)\right\}$$
$$= \left(\int_Y f_1(y) d\nu(y)\right)^p \left(\int_Y f_2(y) d\nu(y)\right)^{1-p}$$

1.2. Morrey spaces

Morrey space was introduced in the course of estimating the solution of partial differential equations in [4].

Definition 1. For $0 and <math>0 \leq \lambda \leq n$, Morrey space $L^{p,\lambda}(\mathbb{R}^n)$ is defined by

$$L^{p,\lambda}(\mathbb{R}^n) = \{ f \in L^p_{loc}(\mathbb{R}^n) : \|f\|_{L^{p,\lambda}} < +\infty \},\$$

where

$$\|f\|_{L^{p,\lambda}} = \sup_{B} \left(\frac{1}{r^{\lambda}} \int_{B} |f(x)|^{p} dx\right)^{\frac{1}{p}}$$

and the supremum is taken over all ball $B = B(a, r) = \{x \in \mathbb{R}^n : |x - a| < r\}$ with center a and radius r > 0.

 $L^{p,\lambda}(\mathbb{R}^n)$ is a Fréchet space, and a Banach space if $p \geq 1$. If $\lambda = 0$, then $L^{p,\lambda}(\mathbb{R}^n) = L^p(\mathbb{R}^n)$. If $\lambda = n$, then $L^{p,\lambda}(\mathbb{R}^n) = L^{\infty}(\mathbb{R}^n)$ by Lebesgue differentiation theorem (see [6]).

1.3. Hölder inequality for Morrey spaces

For $1/p_1 + 1/p_2 = 1$ and $\lambda_1/p_1 + \lambda_2/p_2 = \lambda$, simple application of classical Hölder inequality of the form (1.1) gives a discrete form of Hölder inequality for Morrey space version:

$$||fg||_{L^{p,\lambda}} \le ||f||_{L^{p_1,\lambda_1}} ||g||_{L^{p_2,\lambda_2}}.$$
(1.3)

1.4. Goal of this paper

We establish a continuous form of Hölder inequality on the settings of Morrey spaces. This will be done in Section 2 and proved in Section 3.

2. A continuous form of Hölder inequality on the settings of Morrey spaces

2.1. Main result

As the main result of this paper, we establish the following theorem which may be regarded as a continuous form of Hölder inequality on Morrey spaces.

626

Theorem 2.1. Let $X = (X, \mu)$ be a probability measure space with positive measure μ . Let $0 \leq \lambda(x) \leq n$ for all $x \in X$. Then for any $p: 0 and each measurable function <math>F: X \times \mathbb{R}^n \to [0, \infty)$,

$$\left\| \exp\left(\int_{X} \log F(x, y) d\mu(x)\right) \right\|_{L^{p,\lambda}(\mathbb{R}^{n})} \le \exp\left(\int_{X} \log \|F_{x}\|_{L^{p,\lambda(x)}(\mathbb{R}^{n})} d\mu(x)\right),$$
(2.1)

where $F_x(y) = F(x, y), y \in \mathbb{R}^n$.

2.2. Discrete form as a Corollary

As a corollary, we have a discrete form of Hölder inequality for Morrey spaces which is a natural generalization of (1.3).

Corollary 2.2. Let $0 , <math>0 \le \lambda \le n$, $0 < p_k < \infty$, $0 \le \lambda_k \le n$, $k = 1, 2, \ldots, N$, and $\sum_{k=1}^{N} \frac{1}{p_k} = \frac{1}{p}$, $\sum_{k=1}^{N} \frac{\lambda_k}{p_k} = \frac{\lambda}{p}$. If $f_k \in L^{p_k, \lambda_k}(\mathbb{R}^n)$, k = 1, 2, ..., N, then

$$\|\prod_{k=1}^{N} f_{k}\|_{L^{p,\lambda}(\mathbb{R}^{n})} \leq \prod_{k=1}^{N} \|f_{k}\|_{L^{p_{k},\lambda_{k}}(\mathbb{R}^{n})}.$$
(2.2)

3. Proofs

3.1. Proof of Theorem 2.1

Fix B = B(a, r) for a moment and set $d\nu(y) = dy/r^{\lambda}$. Let $f(x, y) = r^{\lambda-\lambda(x)}F(x, y)^p$ for a p: 0 . Then <math>f is a measurable function on $(X, \mu) \times (B, \nu)$. Since X and B are σ -finite, Theorem A guarantees

$$\frac{1}{r^{\lambda}} \int_{B} \exp\left(\int_{X} \log f(x, y) \ d\mu(x)\right) dy \\
\leq \exp\left\{\int_{X} \log\left(\frac{1}{r^{\lambda}} \int_{B} f(x, y) \ dy\right) d\mu(x)\right\},$$
(3.1)

and simple calculation shows that (3.1) becomes

$$\frac{1}{r^{\lambda}} \int_{B} \exp\left(\int_{X} \log F(x, y)^{p} d\mu(x)\right) dy$$

$$\leq \exp\left\{\int_{X} \log\left(\frac{1}{r^{\lambda(x)}} \int_{B} F(x, y)^{p} dy\right) d\mu(x)\right\},$$

which is equivalent to

$$\left[\frac{1}{r^{\lambda}}\int_{B}\left\{\exp\left(\int_{X}\log F(x,y) \ d\mu(x)\right)\right\}^{p} dy\right]^{1/p} \leq \exp\left\{\int_{X}\log\left(\frac{1}{r^{\lambda(x)}}\int_{B}F(x,y)^{p} \ dy\right)^{1/p} d\mu(x)\right\}.$$
(3.2)

Note, since F is measurable on $X \times \mathbb{R}^n$, that (3.2) holds for any B = B(a, r). Now, taking the supremum for all B = B(a, r) on both sides of (3.2) we obtain (2.1).

3.2. Proof of Corollary 2.2

We may assume p = 1. Let $X = \{1, 2, ..., N\}$ and

$$d\mu(x) = \sum_{k=1}^{N} \frac{1}{p_k} \chi_{\{k\}}(x) \ dm(x),$$

where dm and $\chi_{\{\cdot\}}$ denote the counting measure and the characteristic function of the set $\{\cdot\}$ respectively. Then,

$$\mu(X) = \int_X d\mu(x) = \int_{\{1,2,\dots,N\}} \sum_{k=1}^N \frac{1}{p_k} \chi_{\{k\}}(x) dm(x) = \sum_{k=1}^N 1/p_k = 1$$

and

$$\int_X \lambda(x) \ d\mu(y) = \int_{\{1,2,\dots,N\}} \lambda(x) \sum_{k=1}^N \frac{1}{p_k} \chi(x) \ dm(x) = \sum_{k=1}^N \frac{\lambda_k}{p_k} = \lambda_k$$

Thus, if we set $F(x, y) = |f(x, y)|^{p_x}$, $x \in X$, $y \in \mathbb{R}^n$, then Theorem 2.1 gives (2.1) with f in place of F. Therefore, we get

$$\begin{split} \|\prod_{k=1}^{N} f_{k}\|_{L^{1,\lambda}(\mathbb{R}^{n})} &= \left\|\prod_{k=1}^{N} F_{k}^{1/p_{k}}\right\|_{L^{1,\lambda}(\mathbb{R}^{n})} \\ &= \left\|\exp\left(\sum_{k=1}^{N} \frac{1}{p_{k}} \log F_{k}(y)\right)\right\|_{L^{1,\lambda}(\mathbb{R}^{n})} \\ &= \left\|\exp\left(\int_{\{1,2,\dots,N\}} \sum_{k=1}^{N} \frac{1}{p_{k}} \chi_{\{k\}}(x) \log F_{x}(y) dm(x)\right)\right\|_{L^{1,\lambda}(\mathbb{R}^{n})} \\ &= \left\|\exp\left(\int_{X} \log f(x,y) d\mu(x)\right)\right\|_{L^{1,\lambda}(\mathbb{R}^{n})} \\ &\leq \exp\left(\int_{X} \log \|f_{x}\|_{L^{1,\lambda(x)}(\mathbb{R}^{n})} d\mu(x)\right) \\ &= \exp\left(\int_{\{1,2,\dots,N\}} \sum_{k=1}^{N} \frac{1}{p_{k}} \chi_{\{k\}}(x) \log \|F_{x}(y)\|_{L^{1,\lambda(x)}(\mathbb{R}^{n})} dm(x)\right) \\ &= \exp\left(\sum_{k=1}^{N} \frac{1}{p_{k}} \log \|F_{k}\|_{L^{1,\lambda_{k}}(\mathbb{R}^{n})}\right) = \prod_{k=1}^{N} \|F_{k}\|_{L^{1,\lambda_{k}}(\mathbb{R}^{n})}^{1/p_{k}} \\ &= \prod_{k=1}^{N} \|f_{k}\|_{L^{p_{k},\lambda_{k}}(\mathbb{R}^{n})}, \end{split}$$

628

which gives (2.2).

References

- E. F. Beckenbach and R. Bellman, *Inequalities Springer-Verlag*, Berlin, Heidelberg, New York, 1961.
- [2] G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities* Cambridge University Press, Cambridge, 1952.
- [3] E. G. Kwon, Extension of Hölder's inequality (I), Bull. Austral. Math. Soc. 51 (1995), 369-375.
- [4] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
- [5] W. Rudin, Real and complex analysis McGraw-Hill, New York, 1973.
- [6] E. M. Stein, Singular integrals and differentiability properties of functions Princeton University Press, Princeton, New Jersey, 1970.

Ern Gun Kwon

Department of Math-Education, Andong National University, Andong 760-749, Korea

 $E\text{-}mail\ address: \texttt{egkwon@anu.ac.kr}$

EUN KYU BAE

Department of Mathematics, Kyungpook National University, daegu 702-701, Korea

 $E\text{-}mail\ address: \texttt{eunkyubae@hanmail.net}$