참고문헌
- M. di Bernardo, C. J. Budd, and A. R. Champneys, Grazing and Border-Collision in Piecewise-Smooth Systems: A Unied Analytical Framework, Phys. Rev. Lett. 86 (2001), 2553. https://doi.org/10.1103/PhysRevLett.86.2553
- M. di Bernardo, C. J. Budd, and A. R. Champneys, Normal form maps for grazing bifur-cations in n-dimensional piecewise-smooth dynamical systems, Physica D. 160 (2001), 222-254. https://doi.org/10.1016/S0167-2789(01)00349-9
- M. di Bernardo, M. I. Feigin, S. J. Hogan and M. E. Homer, Local Analysis of C- Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems, Chaos Solitons Fractals. 10(1999), 1881. https://doi.org/10.1016/S0960-0779(98)00317-8
- Y. Do, A mechanism for dangerous border collision bifurcations Chaos, Solitons & Fractals. 32 (2007), 352362.
- Y. Do, S. Kim, P. Kim, Stability of fixed points placed on the border in the piecewise linear systems, Chaos, Solitons & Fractals. 38 (2008), 391399.
- Y. Do and Y-C. Lai, Multistability and arithmetically period-adding bifurcations in piece-wise smooth dynamical systems, Chaos. 18 (2008), 043107. https://doi.org/10.1063/1.2985853
- H. Baek, Y. Do, Existence of homoclinic orbits of an area-preserving map with a non-hyperbolic structure, Chaos Solitons & Fractals. 41 (2009), 21542162.
- M. Dutta, H. E. Nusse, E. Ott, J. A. Yorke and G. Yuanb, Multiple Attractor Bifurca-tions: A Source of Unpredictability in Piecewise Smooth Systems, Phys. Rev. Lett. 83 (1999), 4281. https://doi.org/10.1103/PhysRevLett.83.4281
- J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bi-furcations of Vector Fields, Springer-Verlag, 1983.
- J. Hale and H. Kocak. Dynamics and Bifurcations, Springer-Verlag, 1991.
- M. A. Hassouneh, E. H. Abed and H. E. Nusse, Robust dangerouse border-collision bifurcation in piecewise smooth systems, Phy. Rev. Lett. 92 (2004), 070201. https://doi.org/10.1103/PhysRevLett.92.070201
- P. Kowalczyk, Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps, Nonlinearity. 18(2005), 485-504. https://doi.org/10.1088/0951-7715/18/2/002
- Y. L. Maistrenko, V. L. Maistrenko, S. I. Vikul, and L. O. Chua, Bifurcations of at-tracting cycles from time-delay Chua's circuit, Int. J. Bifurcation and Chaos. 5 (1995), 653-671. https://doi.org/10.1142/S021812749500051X
- A. B. Nordmark, Non-periodic motion caused by grazing incidence in impact oscillators, J. Sound Vib. 2 (1991), 279-297.
- H. E. Nusse, E. Ott, and J. A. Yorke, Border-collision bifurcations: An explanation for observed bifurcation phenomena, Phys. Rev. E. 49 (1994), 1073.
- H. E. Nusse and J. A. Yorke, Border-collision bifurcation including "period two to period three" for piecewise smooth systems, Physica D. 57 (1992), 39-57. https://doi.org/10.1016/0167-2789(92)90087-4
- S. Parui and S. Banerjee, Border-collision bifurcations at the change of state-space dimension, Chaos. 12(2002), 1054-1069. https://doi.org/10.1063/1.1521390
- G. Yuan, S. Banerjee, E. Ott and J. A. Yorke, Border-collision bifurcations in the buck converter, IEEE Transactions on circuits and systems. 45 (1998), 707-716. https://doi.org/10.1109/81.703837
- U. Feudel, C. Grebogi, B. Hunt, and J. A. Yorke, Map with more than 100 coexisting low-period periodic attractors. Phys. Rev. E. 54 (1996), 71. https://doi.org/10.1103/PhysRevE.54.71
- U. Feudel and C. Grebogi, Multistability and the control of complexity, Chaos. 7 (1997), 597. https://doi.org/10.1063/1.166259