DOI QR코드

DOI QR Code

DYNAMICS ON AN INVARIANT SET OF A TWO-DIMENSIONAL AREA-PRESERVING PIECEWISE LINEAR MAP

  • 투고 : 2014.02.11
  • 심사 : 2014.06.02
  • 발행 : 2014.09.30

초록

In this paper, we study an area-preserving piecewise linear map with the feature of dangerous border collision bifurcations. Using this map, we study dynamical properties occurred in the invariant set, specially related to the boundary of KAM-tori, and the existence and stabilities of periodic orbits. The result shows that elliptic regions having periodic orbits and chaotic region can be divided by smooth curve, which is an unexpected result occurred in area preserving smooth dynamical systems.

키워드

참고문헌

  1. M. di Bernardo, C. J. Budd, and A. R. Champneys, Grazing and Border-Collision in Piecewise-Smooth Systems: A Uni ed Analytical Framework, Phys. Rev. Lett. 86 (2001), 2553. https://doi.org/10.1103/PhysRevLett.86.2553
  2. M. di Bernardo, C. J. Budd, and A. R. Champneys, Normal form maps for grazing bifur-cations in n-dimensional piecewise-smooth dynamical systems, Physica D. 160 (2001), 222-254. https://doi.org/10.1016/S0167-2789(01)00349-9
  3. M. di Bernardo, M. I. Feigin, S. J. Hogan and M. E. Homer, Local Analysis of C- Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems, Chaos Solitons Fractals. 10(1999), 1881. https://doi.org/10.1016/S0960-0779(98)00317-8
  4. Y. Do, A mechanism for dangerous border collision bifurcations Chaos, Solitons & Fractals. 32 (2007), 352362.
  5. Y. Do, S. Kim, P. Kim, Stability of fixed points placed on the border in the piecewise linear systems, Chaos, Solitons & Fractals. 38 (2008), 391399.
  6. Y. Do and Y-C. Lai, Multistability and arithmetically period-adding bifurcations in piece-wise smooth dynamical systems, Chaos. 18 (2008), 043107. https://doi.org/10.1063/1.2985853
  7. H. Baek, Y. Do, Existence of homoclinic orbits of an area-preserving map with a non-hyperbolic structure, Chaos Solitons & Fractals. 41 (2009), 21542162.
  8. M. Dutta, H. E. Nusse, E. Ott, J. A. Yorke and G. Yuanb, Multiple Attractor Bifurca-tions: A Source of Unpredictability in Piecewise Smooth Systems, Phys. Rev. Lett. 83 (1999), 4281. https://doi.org/10.1103/PhysRevLett.83.4281
  9. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bi-furcations of Vector Fields, Springer-Verlag, 1983.
  10. J. Hale and H. Kocak. Dynamics and Bifurcations, Springer-Verlag, 1991.
  11. M. A. Hassouneh, E. H. Abed and H. E. Nusse, Robust dangerouse border-collision bifurcation in piecewise smooth systems, Phy. Rev. Lett. 92 (2004), 070201. https://doi.org/10.1103/PhysRevLett.92.070201
  12. P. Kowalczyk, Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps, Nonlinearity. 18(2005), 485-504. https://doi.org/10.1088/0951-7715/18/2/002
  13. Y. L. Maistrenko, V. L. Maistrenko, S. I. Vikul, and L. O. Chua, Bifurcations of at-tracting cycles from time-delay Chua's circuit, Int. J. Bifurcation and Chaos. 5 (1995), 653-671. https://doi.org/10.1142/S021812749500051X
  14. A. B. Nordmark, Non-periodic motion caused by grazing incidence in impact oscillators, J. Sound Vib. 2 (1991), 279-297.
  15. H. E. Nusse, E. Ott, and J. A. Yorke, Border-collision bifurcations: An explanation for observed bifurcation phenomena, Phys. Rev. E. 49 (1994), 1073.
  16. H. E. Nusse and J. A. Yorke, Border-collision bifurcation including "period two to period three" for piecewise smooth systems, Physica D. 57 (1992), 39-57. https://doi.org/10.1016/0167-2789(92)90087-4
  17. S. Parui and S. Banerjee, Border-collision bifurcations at the change of state-space dimension, Chaos. 12(2002), 1054-1069. https://doi.org/10.1063/1.1521390
  18. G. Yuan, S. Banerjee, E. Ott and J. A. Yorke, Border-collision bifurcations in the buck converter, IEEE Transactions on circuits and systems. 45 (1998), 707-716. https://doi.org/10.1109/81.703837
  19. U. Feudel, C. Grebogi, B. Hunt, and J. A. Yorke, Map with more than 100 coexisting low-period periodic attractors. Phys. Rev. E. 54 (1996), 71. https://doi.org/10.1103/PhysRevE.54.71
  20. U. Feudel and C. Grebogi, Multistability and the control of complexity, Chaos. 7 (1997), 597. https://doi.org/10.1063/1.166259