Effects of Ethyl acetate Fraction of Vigna angularis on Stress Resistances and Anti-oxidative Activities in Caenorhabditis elegans

팥 에틸아세테이트 분획이 선충의 스트레스 저항성과 항산화 활성에 미치는 영향

  • Received : 2014.09.05
  • Accepted : 2014.09.17
  • Published : 2014.09.30

Abstract

The seed of Vigna angularis (Ohwi) Ohwi & Ohashi (= Phaseolus angularis W. F. Wight, Leguminosae) is one of well-known folk foodstuffs in Korea, China and Japan. In the course of screening for antioxidants from natural plants in Korea by measuring the radical scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH) a methanol extract of the seeds of V. angularis were found to show a potent antioxidant activity. And the ethyl acetate soluble fraction of V. angularis (VAEA) showed the most potent DPPH radical scavenging and superoxide quenching activities. To reveal the effect of antioxidant activities of VAEA, we tested the thermal and oxidative stress tolerances, activities of SOD and catalase, and intracellular ROS level in Caenorhabditis elegans. Consequently, VAEA-fed worms lived longer than control worms under the thermal and oxidative stress conditions. And VAEA elevated SOD and catalase activities of worms, and reduced intracellular ROS accumulation in a dose-dependent manner.

Keywords

References

  1. Labuschagne, C. F. and Brenkman, A. B. (2013) Current methods in quantifying ROS and oxidative damage in Caenorhabditis elegans and other model organism of aging. Ageing Res. Rev. 12: 918-930. https://doi.org/10.1016/j.arr.2013.09.003
  2. Hekimi, S., Lapointe, J. and Wen, Y. (2011) Taking a "good" look at free radicals in the aging process. Trends Cell Biol. 21: 569-576. https://doi.org/10.1016/j.tcb.2011.06.008
  3. Fearon, I. M. and Faux, S. P. (2009) Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J. Mol. Cell Cardiol. 47: 372-381. https://doi.org/10.1016/j.yjmcc.2009.05.013
  4. Wei, Y. H. and Lee, H. C. (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp. Biol. Med. (Maywood) 227: 671-682. https://doi.org/10.1177/153537020222700901
  5. Yu, B. P. (1996) Aging and oxidative stress: modulation by dietary restriction. Free Radic. Biol. Med. 21: 651-668. https://doi.org/10.1016/0891-5849(96)00162-1
  6. Cakir, A., Mav,i A., Yildirim, A., Duru, M. E., Harmandar, M. and Kazaz, C. (2003) Isolation and characterization of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation. J. Ethnopharmacol. 87: 73-83. https://doi.org/10.1016/S0378-8741(03)00112-0
  7. Lee, Y. N. (2006) New flora of Korea, 628. Kyo-hak publishing Co., LTD, Seoul.
  8. Kitano-Okada, T., Ito, A., Koide, A., Kakamura, Y., Han, K.-H., Shimada, K., Sasaki, K., Ohba, K., Sibayama, S. and Fukushima, M. (2012) Anti-obesity role of adzuki bean extract containing polyphenols: in vivo and in vitro effects. J. Sci, Food Agric. 92: 2644-2651. https://doi.org/10.1002/jsfa.5680
  9. Itoh, T., Kobayashi, M., Horio, F. and Furuichi, Y. (2009) Hypoglycemic effect of hot-water extract of adzuki (Vigna angularis) in spontaneously diabetic KK-Ay mice. Nutrition 25: 134-141. https://doi.org/10.1016/j.nut.2008.08.001
  10. Itoh, T. and Furuichi, Y. (2009) Lowering serum cholesterol level by feeding a 40% ethanol-eluted fraction from HP-20 resin treated with hot water extract of adzuki beans (Vigna angularis) to rats fed a high-fat cholesterol diet. Nutrition 25: 318-321. https://doi.org/10.1016/j.nut.2008.08.011
  11. Itoh, T., Umekawa, H. and Furuichi, Y. (2005) Potential ability of hot water adzuki (Vigna angularis) extracts to inhibit the adhesion, invasion, and metastasis of murine B16 melanoma cells. Biosci. Biotechnol. Biochem. 69: 448-454. https://doi.org/10.1271/bbb.69.448
  12. Woo, K. S., Song, S. B., Ko, J. Y., Seo, M. C. and Lee, J. (2010) Antioxidant components and antioxidant activities of methanolic extract from adzuki beans (Vigna angularis var. nipponensis). Korean J. Food Sci. Technol. 42: 693-698.
  13. Yu, T., Ahn, H. M., Shen, T., Yoon, K., Jang, H.-J., Lee, Y. J., Yang, H. M., Kim, J. H., Kim, C., Han, M. H., Cha, S.-h., Kim, T. W., Kim, S. Y., Lee, J. and Cho, J. Y. (2011) Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis. J. Ethnopharm. 137: 1197-1206. https://doi.org/10.1016/j.jep.2011.07.048
  14. Iida, T., Yoshiki, Y., Kahara, T., Okubo, K. and Ohrui, H. (1997) A saponin conjugated with 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one from Vigna angularis. Phytochemistry 45: 1507-1509. https://doi.org/10.1016/S0031-9422(97)00169-6
  15. Iida, T., Yoshiki, Y., Okubo, K., Ohrui, H., Kinjo, J. and Nohara, T. (1999) Triterpenoid saponins from Vigna angularis. Phytochemistry 51: 1055-1058. https://doi.org/10.1016/S0031-9422(99)00148-X
  16. Yao, Y., Cheng, X., Wang, L., Wang, S. and Ren, G. (2011) A determination of potential $\alpha$-glucosidase inhibitors from azuki beans (Vigna angularis). Int. J. Mol. Sci. 12: 6445-6451. https://doi.org/10.3390/ijms12106445
  17. Takahama, U., Yamauchi, R. and Hirota, S. (2013) Isolation and characterization of a cyanidin-catechin pigment from adzuki bean (Vigna angularis). Food Chem. 141: 282-288. https://doi.org/10.1016/j.foodchem.2013.02.113
  18. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, L., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
  19. Thuong, P. T., Kang, H. J., Na, M. K., Jin, W. Y., Youn, U. J. and Seong, Y. H. (2007) Antioxidant constituents from Sedum takesimense. Phytochemistry 68: 2432-2438. https://doi.org/10.1016/j.phytochem.2007.05.031
  20. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  21. Lee, E.Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  22. Mekheimer, R. A., Sayed, A. A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chemi. 55: 4169-4177. https://doi.org/10.1021/jm2014315
  23. Aebi, H. (1984) Catalase in vitro. Methods. Enzymol. 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  24. Ibrahim, H. R., Hoq, M. I. and Aoki, T. (2007) Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int. J. Biol. Macromol. 41: 631-640. https://doi.org/10.1016/j.ijbiomac.2007.08.005
  25. Kim, M. H. Jeoung, S. H. Lee, S. W. Kim, H. K. Park, C. S. Jeon, B. H., Oh, H. M. and Rho, M. C. (2012) Effect of Vigna angularis on toll like receptor activation and pro-inflammatory cytokine production. Korean J. Oriental Physiology & Pathology 26: 511-518.
  26. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  27. Kenyon, C., Chang, J., Gensch, E., Rudner, A. and Tabtlang, R. (1993) C. elegans mutant that lives twice as long as wild type. Nature 366: 461-464. https://doi.org/10.1038/366461a0
  28. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetics interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 744-745. https://doi.org/10.1038/35750
  29. Guarente, L. and Kenyon, C. (2000) Genetic pathways that regulate ageing in model organisms. Nature 408: 255-262. https://doi.org/10.1038/35041700
  30. Park, Y. H., Lee, Y. U., Kim, H. J., Lee, Y. S., Yoon, Y. A., Moon, B. H., Chong, Y. H., Ahn, J. H., Shim, Y. H. and Lim, Y. H. (2006) NMR data of flavone derivatives and their antioxidative activities. Bul. Korean Chem. Soc. 27: 1537-1541. https://doi.org/10.5012/bkcs.2006.27.10.1537
  31. Zhang, L., Jie, G., Zhang, J. and Zhao, B. (2009) Significant longevity-extending effects of EGCG on C. elegans under stress. Free Radic. Biol. Med. 46: 414-421. https://doi.org/10.1016/j.freeradbiomed.2008.10.041
  32. Melov, S., Ravenscroft, J., Malik, S., Gill, M. S., Walker, D. W., Clayton, P. E., Wallace, D. C., Malfroy, B., Doctrow, S. R. and Lithgow, G. J. (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289(5484): 1567-1569. https://doi.org/10.1126/science.289.5484.1567