참고문헌
- Pessolato AG, Martins Ddos S, Ambrosio CE, et al. Propolis and amnion reepithelialise second-degree burns in rats. Burns 2011;37:1192-201. https://doi.org/10.1016/j.burns.2011.05.016
- Gurung S, Skalko-Basnet N. Wound healing properties of Carica papaya latex: in vivo evaluation in mice burn model. J Ethnopharmacol 2009;121:338-41. https://doi.org/10.1016/j.jep.2008.10.030
- Priya KS, Gnanamani A, Radhakrishnan N, et al. Healing potential of Datura alba on burn wounds in albino rats. J Ethnopharmacol 2002;83:193-9. https://doi.org/10.1016/S0378-8741(02)00195-2
- Eloy R, Cornillac AM. Wound healing of burns in rats treated with a new amino acid copolymer membrane. Burns 1992; 18:405-11. https://doi.org/10.1016/0305-4179(92)90041-R
- Upadhyay NK, Kumar R, Mandotra SK, et al. Safety and healing efficacy of Sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats. Food Chem Toxicol 2009; 47:1146-53. https://doi.org/10.1016/j.fct.2009.02.002
- Meyer TN, Silva AL. A standard burn model using rats. Acta Cir Bras 1999;14. http://dx.doi.org/10.1590/S0102-86501999000400009.
- Mohd Zohdi R, Abu Bakar Zakaria Z, Yusof N, et al. Gelam (Melaleuca spp.) Honey-Based Hydrogel as Burn Wound Dressing. Evid Based Complement Alternat Med 2012;2012:843025.
- Campelo AP, Campelo MW, Britto GA, et al. An optimized animal model for partial and total skin thickness burns studies. Acta Cir Bras 2011;26 Suppl 1:38-42.
- Tavares Pereira Ddos S, Lima-Ribeiro MH, de Pontes-Filho NT, et al. Development of animal model for studying deep second-degree thermal burns. J Biomed Biotechnol 2012;2012:460841.
- Mitsunaga Junior JK, Gragnani A, Ramos ML, et al. Rat an experimental model for burns: a systematic review. Acta Cir Bras 2012;27:417-23. https://doi.org/10.1590/S0102-86502012000600010
- Benson A, Dickson WA, Boyce DE. ABC of wound healing: burns. BMJ 2006;332:649-52. https://doi.org/10.1136/bmj.332.7542.649
- Galiano RD, Michaels Jt, Dobryansky M, et al. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 2004;12:485-92. https://doi.org/10.1111/j.1067-1927.2004.12404.x
- Montandon D, D'Andiran G, Gabbiani G. The mechanism of wound contraction and epithelialization: clinical and experimental studies. Clin Plast Surg 1977;4:325-46.
- Aksoy MH, Vargel I, Canter IH, et al. A new experimental hypertrophic scar model in guinea pigs. Aesthetic Plast Surg 2002;26:388-96. https://doi.org/10.1007/s00266-002-1121-z
- Zawacki BE, Jones RJ. Standard depth burns in the rat: the importance of the hair growth cycle. Br J Plast Surg 1967; 20:347-54. https://doi.org/10.1016/S0007-1226(67)80065-1
- Muller-Rover S, Handjiski B, van der Veen C, et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 2001;117:3-15. https://doi.org/10.1046/j.0022-202x.2001.01377.x
- Chase HB. Growth of the hair. Physiol Rev 1954;34:113-26.
- Plikus MV, Mayer JA, de la Cruz D, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 2008;451:340-4. https://doi.org/10.1038/nature06457
- Hinrichsen N, Birk-Sorensen L, Gottrup F, et al. Wound contraction in an experimental porcine model. Scand J Plast Reconstr Surg Hand Surg 1998;32:243-8. https://doi.org/10.1080/02844319850158561
- Goldratt E, Greenfield AJ. New method for measuring the thermal conductivity. Rev Sci Instrum 1978;49:1531. https://doi.org/10.1063/1.1135306
피인용 문헌
- Design and Testing of an Experimental Steam-Induced Burn Model in Rats vol.2017, pp.None, 2014, https://doi.org/10.1155/2017/9878109
- A New Model of Extraocular Muscle Fibrosis by Thermal Cauterization in the Rats vol.59, pp.5, 2018, https://doi.org/10.3341/jkos.2018.59.5.478
- Collagen-Polyvinyl Alcohol-Indomethacin Biohybrid Matrices as Wound Dressings vol.10, pp.4, 2018, https://doi.org/10.3390/pharmaceutics10040224
- The Cutaneous Inflammatory Response to Thermal Burn Injury in a Murine Model vol.20, pp.3, 2014, https://doi.org/10.3390/ijms20030538
- Fidgetin-Like 2 siRNA Enhances the Wound Healing Capability of a Surfactant Polymer Dressing vol.8, pp.3, 2014, https://doi.org/10.1089/wound.2018.0827
- Comparative study on the effects of heated brass bar and scald methods in experimental skin burn in rat vol.28, pp.5, 2014, https://doi.org/10.1007/s00580-019-02975-2
- In Vitro and in Vivo Studies of pH-Sensitive GHK-Cu-Incorporated Polyaspartic and Polyacrylic Acid Superabsorbent Polymer vol.4, pp.23, 2014, https://doi.org/10.1021/acsomega.9b00655
- Temporal shifts in the mycobiome structure and network architecture associated with a rat (Rattus norvegicus) deep partial-thickness cutaneous burn vol.58, pp.1, 2020, https://doi.org/10.1093/mmy/myz030
- Seeds of Zizyphus lotus : In Vivo Healing Properties of the Vegetable Oil vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/1724543
- Withania frutescens: Chemical characterization, analgesic, anti-inflammatory, and healing activities vol.18, pp.1, 2014, https://doi.org/10.1515/chem-2020-0088
- Withania frutescens: Chemical characterization, analgesic, anti-inflammatory, and healing activities vol.18, pp.1, 2014, https://doi.org/10.1515/chem-2020-0088
- Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL‐1β, TGF‐β1, and bFGF in burn wound model in rat vol.108, pp.2, 2014, https://doi.org/10.1002/jbm.b.34411
- Chemisorption and sustained release of cefotaxime between a layered double hydroxide and polyvinyl alcohol nanofibers for enhanced efficacy against second degree burn wound infection vol.10, pp.22, 2020, https://doi.org/10.1039/c9ra08355c
- Collective Locomotion of Human Cells, Wound Healing and Their Control by Extracts and Isolated Compounds from Marine Invertebrates vol.25, pp.11, 2014, https://doi.org/10.3390/molecules25112471
- Current status and future outlook of nano‐based systems for burn wound management vol.108, pp.5, 2020, https://doi.org/10.1002/jbm.b.34535
- Bone Marrow-Derived Mesenchymal Stem Cells Combined With Simvastatin Accelerates Burn Wound Healing by Activation of the Akt/mTOR Pathway vol.41, pp.5, 2014, https://doi.org/10.1093/jbcr/iraa005
- Non-Thermal Atmospheric Pressure Argon-Sourced Plasma Flux Promotes Wound Healing of Burn Wounds and Burn Wounds with Infection in Mice through the Anti-Inflammatory Macrophages vol.11, pp.12, 2014, https://doi.org/10.3390/app11125343
- Evaluation of the Wheat Germ Oil Topical Formulations for Wound Healing Activity in Rats vol.24, pp.6, 2014, https://doi.org/10.3923/pjbs.2021.706.715