DOI QR코드

DOI QR Code

Proliferation of Keratinocytes Induced by Adipose-Derived Stem Cells on a Chitosan Scaffold and Its Role in Wound Healing, a Review

  • Gomathysankar, Sankaralakshmi (Reconstructive Sciences Unit., School of Medical Sciences, Universiti Sains Malaysia) ;
  • Halim, Ahmad Sukari (Reconstructive Sciences Unit., School of Medical Sciences, Universiti Sains Malaysia) ;
  • Yaacob, Nik Soriani (Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia)
  • Received : 2014.03.20
  • Accepted : 2014.04.26
  • Published : 2014.09.15

Abstract

In the field of tissue engineering and reconstruction, the development of efficient biomaterial is in high demand to achieve uncomplicated wound healing. Chronic wounds and excessive scarring are the major complications of tissue repair and, as this inadequate healing continues to increase, novel therapies and treatments for dysfunctional skin repair and reconstruction are important. This paper reviews the various aspects of the complications related to wound healing and focuses on chitosan because of its unique function in accelerating wound healing. The proliferation of keratinocytes is essential for wound closure, and adipose-derived stem cells play a significant role in wound healing. Thus, chitosan in combination with keratinocytes and adipose-derived stem cells may act as a vehicle for delivering cells, which would increase the proliferation of keratinocytes and help complete recovery from injuries.

Keywords

References

  1. Kirsner RS, Eaglstein WH. The wound healing process. Dermatol Clin 1993;11:629-40.
  2. Boyce ST, Warden GD. Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 2002;183:445-56. https://doi.org/10.1016/S0002-9610(02)00813-9
  3. Phillips TJ. Current approaches to venous ulcers and compression. Dermatol Surg 2001;27:611-21.
  4. Reiber GE, Boyko EJ, Smith DG. Lower extremity foot ulcers and amputations in diabetes. In: Harris MI, Cowie CC, Stern MP, editors. Diabetes in America. 2nd ed. Washington, DC: U.S. Government Printing Office; 1995. p.409-28.
  5. Eisenbud D, Huang NF, Luke S, et al. Review skin substitutes and wound healing: current status and challenges. Wounds 2004;16:2-17.
  6. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003;83:835-70.
  7. Rappolee DA, Patel Y, Jacobson K. Expression of fibroblast growth factor receptors in peri-implantation mouse embryos. Mol Reprod Dev 1998;51:254-64. https://doi.org/10.1002/(SICI)1098-2795(199811)51:3<254::AID-MRD4>3.0.CO;2-O
  8. Martin P. Wound healing: aiming for perfect skin regeneration. Science 1997;276:75-81. https://doi.org/10.1126/science.276.5309.75
  9. Papini R. Management of burn injuries of various depths. BMJ 2004;329:158-60. https://doi.org/10.1136/bmj.329.7458.158
  10. Steeper R. A critical review of the aetiology of diabetic neuropathic ulcers. J Wound Care 2005;14:101-3. https://doi.org/10.12968/jowc.2005.14.3.26746
  11. Braddock M, Campbell CJ, Zuder D. Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy. Int J Dermatol 1999;38:808-17. https://doi.org/10.1046/j.1365-4362.1999.00832.x
  12. Atiyeh BS, Hayek SN, Gunn SW. New technologies for burn wound closure and healing-review of the literature. Burns 2005;31:944-56. https://doi.org/10.1016/j.burns.2005.08.023
  13. Horch RE, Kopp J, Kneser U, et al. Tissue engineering of cultured skin substitutes. J Cell Mol Med 2005;9:592-608. https://doi.org/10.1111/j.1582-4934.2005.tb00491.x
  14. Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns 2007;33:405-13. https://doi.org/10.1016/j.burns.2006.11.002
  15. Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol 2007;127:1018-29. https://doi.org/10.1038/sj.jid.5700715
  16. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature 2007;445:874-80. https://doi.org/10.1038/nature05664
  17. Patel M, Fisher JP. Biomaterial scaffolds in pediatric tissue engineering. Pediatr Res 2008;63:497-501. https://doi.org/10.1203/01.PDR.0b013e318165eb3e
  18. Halim AS, Khoo TL, Mohd Yussof SJ. Biologic and synthetic skin substitutes: An overview. Indian J Plast Surg 2010;43:S23-8. https://doi.org/10.4103/0970-0358.70712
  19. Kumar P. Classification of skin substitutes. Burns 2008;34:148-9. https://doi.org/10.1016/j.burns.2007.04.016
  20. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg 2002;55:185-93. https://doi.org/10.1054/bjps.2002.3800
  21. Shakespeare PG. The role of skin substitutes in the treatment of burn injuries. Clin Dermatol 2005;23:413-8. https://doi.org/10.1016/j.clindermatol.2004.07.015
  22. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2010;7:229-58. https://doi.org/10.1098/rsif.2009.0403
  23. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci 2006;31:603-32. https://doi.org/10.1016/j.progpolymsci.2006.06.001
  24. Rane KD, Hoover DG. Production of chitosan by fungi. Food Biotechnol 1993;7:11-33. https://doi.org/10.1080/08905439309549843
  25. Aranaz I, Harris R, Heras A. Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem 2010;14:308-30.
  26. Aranaz I, Mengibar M, Harris R, et al. Functional characterization of chitin and chitosan. Curr Chem Biol 2009;3:203-30.
  27. Zhang J, Xia W, Liu P, et al. Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 2010;8:1962-87. https://doi.org/10.3390/md8071962
  28. Croisier F, Jerome C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013;49:780-92. https://doi.org/10.1016/j.eurpolymj.2012.12.009
  29. Prado AG, Torres JD, Faria EA, et al. Comparative adsorption studies of indigo carmine dye on chitin and chitosan. J Colloid Interface Sci 2004;277:43-7. https://doi.org/10.1016/j.jcis.2004.04.056
  30. Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 2001;52:105-15. https://doi.org/10.1016/S0169-409X(01)00189-2
  31. Obara K, Ishihara M, Fujita M, et al. Acceleration of wound healing in healing-impaired db/db mice with a photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2. Wound Repair Regen 2005;13:390-7. https://doi.org/10.1111/j.1067-1927.2005.130406.x
  32. Mao JS, Zhao LG, Yin YJ, et al. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials 2003;24:1067-74. https://doi.org/10.1016/S0142-9612(02)00442-8
  33. Liao F, Chen Y, Li Z, et al. A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med 2010;21:489-96. https://doi.org/10.1007/s10856-009-3931-x
  34. Lord MS, Cheng B, McCarthy SJ, et al. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials 2011;32:6655-62. https://doi.org/10.1016/j.biomaterials.2011.05.062
  35. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999;341:738-46. https://doi.org/10.1056/NEJM199909023411006
  36. Pastar I, Stojadinovic O, Tomic-Canic M. Role of keratinocytes in healing of chronic wounds. Surg Technol Int 2008;17:105-12.
  37. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 1997;18:567-75. https://doi.org/10.1016/S0142-9612(96)00167-6
  38. Varum KM, Myhr MM, Hjerde RJ, et al. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 1997;299:99-101. https://doi.org/10.1016/S0008-6215(96)00332-1
  39. Sathirakul K, How NC, Stevens WF, et al. Application of chitin and chitosan bandages for wound healing. Adv Chitin Sci 1996;1:490-2.
  40. Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 2001;22:261-8. https://doi.org/10.1016/S0142-9612(00)00183-6
  41. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975;6:331-43. https://doi.org/10.1016/S0092-8674(75)80001-8
  42. Howling GI, Dettmar PW, Goddard PA, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 2001;22:2959-66. https://doi.org/10.1016/S0142-9612(01)00042-4
  43. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 2007;25:2896-902. https://doi.org/10.1634/stemcells.2007-0637
  44. Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008;3:e1886. https://doi.org/10.1371/journal.pone.0001886
  45. Wu Y, Chen L, Scott PG, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007;25:2648-59. https://doi.org/10.1634/stemcells.2007-0226
  46. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007;100:1249-60. https://doi.org/10.1161/01.RES.0000265074.83288.09
  47. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211-28. https://doi.org/10.1089/107632701300062859
  48. Wong VW, Levi B, Rajadas J, et al. Stem cell niches for skin regeneration. Int J Biomater 2012;2012:926059.
  49. Gobin AS, Butler CE, Mathur AB. Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend. Tissue Eng 2006;12:3383-94. https://doi.org/10.1089/ten.2006.12.3383
  50. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003;24:2339-49. https://doi.org/10.1016/S0142-9612(03)00026-7
  51. Altman AM, Yan Y, Matthias N, et al. IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 2009;27:250-8. https://doi.org/10.1634/stemcells.2008-0178
  52. Malafaya PB, Pedro AJ, Peterbauer A, et al. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Med 2005;16:1077-85. https://doi.org/10.1007/s10856-005-4709-4
  53. Lee SH, Jin SY, Song JS, et al. Paracrine effects of adipose-derived stem cells on keratinocytes and dermal fibroblasts. Ann Dermatol 2012;24:136-43. https://doi.org/10.5021/ad.2012.24.2.136
  54. Mohd Hilmi AB, Halim AS, Jaafar H, et al. Chitosan dermal substitute and chitosan skin substitute contribute to accelerated full-thickness wound healing in irradiated rats. Biomed Res Int 2013;2013:795458.

Cited by

  1. Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity vol.10, pp.None, 2014, https://doi.org/10.2147/ijn.s83705
  2. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine vol.8, pp.4, 2015, https://doi.org/10.1242/dmm.018499
  3. Oriented cell division: new roles in guiding skin wound repair and regeneration vol.35, pp.6, 2014, https://doi.org/10.1042/bsr20150225
  4. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/5786257
  5. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/8281235
  6. Multidisciplinary approaches to stimulate wound healing vol.1378, pp.1, 2014, https://doi.org/10.1111/nyas.13158
  7. Chitosan-poly(caprolactone) nanofibers for skin repair vol.5, pp.9, 2014, https://doi.org/10.1039/c6tb03223k
  8. Application of Chitosan as Scaffold Material of Construction In Vitro vol.893, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/msf.893.53
  9. Improvement of Biological Properties of Natural Hemostatic Agent by Plasma Technology vol.249, pp.None, 2014, https://doi.org/10.1051/matecconf/201824901010
  10. The Effects of Adipose Stem Cell–Conditioned Media on Fibrogenesis of Dermal Fibroblasts Stimulated by Transforming Growth Factor-β1 vol.39, pp.1, 2014, https://doi.org/10.1097/bcr.0000000000000558
  11. Bone marrow-derived versus adipose-derived stem cells in wound healing: value and route of administration vol.374, pp.2, 2014, https://doi.org/10.1007/s00441-018-2879-x
  12. Chitosan in Biomedical Engineering: A Critical Review vol.14, pp.2, 2019, https://doi.org/10.2174/1574888x13666180912142028
  13. Preparation and properties of caffeic-chitosan grafting fish bone collagen peptide vol.36, pp.5, 2014, https://doi.org/10.1177/08839115211046417