DOI QR코드

DOI QR Code

Direct Lateral Lumbar Interbody Fusion : Clinical and Radiological Outcomes

  • Lee, Young Seok (Department of Neurosurgery, Chung-Ang University Hospital) ;
  • Park, Seung Won (Department of Neurosurgery, Chung-Ang University Hospital) ;
  • Kim, Young Baeg (Department of Neurosurgery, Chung-Ang University Hospital)
  • 투고 : 2013.10.15
  • 심사 : 2014.05.15
  • 발행 : 2014.05.28

초록

Objective : According to the recent development of minimally invasive spinal surgery, direct lumbar interbody fusion (DLIF) was introduced as an effective option to treat lumbar degenerative diseases. However, comprehensive results of DLIF have not been reported in Korea yet. The object of this study is to summarize radiological and clinical outcomes of our DLIF experience. Methods : We performed DLIF for 130 patients from May 2011 to June 2013. Among them, 90 patients, who could be followed up for more than 6 months, were analyzed retrospectively. Clinical outcomes were compared using visual analog scale (VAS) score and Oswestry Disability Index (ODI). Bilateral foramen areas, disc height, segmental coronal and sagittal angle, and regional sagittal angle were measured. Additionally, fusion rate was assessed. Results : A total of 90 patients, 116 levels, were underwent DLIF. The VAS and ODI improved statistically significant after surgery. All the approaches for DLIF were done on the left side. The left and right side foramen area changed from $99.5mm^2$ and $102.9mm^2$ to $159.2mm^2$ and $151.2mm^2$ postoperatively (p<0.001). Pre- and postoperative segmental coronal and sagittal angles changed statistically significant from $4.1^{\circ}$ and $9.9^{\circ}$ to $1.1^{\circ}$ and $11.1^{\circ}$. Fusion rates of 6 and 12 months were 60.9% and 87.8%. Complications occurred in 17 patients (18.9%). However, most of the complications were resolved within 2 months. Conclusion : DLIF is not only effective for indirect decompression and deformity correction but also shows satisfactory mechanical stability and fusion rate.

키워드

참고문헌

  1. Acosta FL, Liu J, Slimack N, Moller D, Fessler R, Koski T : Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults : a radiographic study. J Neurosurg Spine 15 : 92-96, 2011 https://doi.org/10.3171/2011.3.SPINE10425
  2. Anand N, Baron EM, Thaiyananthan G, Khalsa K, Goldstein TB : Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis : a technique and feasibility study. J Spinal Disord Tech 21 : 459-467, 2008 https://doi.org/10.1097/BSD.0b013e318167b06b
  3. Anand N, Rosemann R, Khalsa B, Baron EM : Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus 28 : E6, 2010
  4. Bridwell KH, Lenke LG, McEnery KW, Baldus C, Blanke K : Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects? Spine (Phila Pa 1976) 20 : 1410-1418, 1995
  5. Burkus JK : Bone morphogenetic proteins in anterior lumbar interbody fusion : old techniques and new technologies. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine 1 : 254-260, 2004 https://doi.org/10.3171/spi.2004.1.3.0254
  6. Cappuccino A, Cornwall GB, Turner AW, Fogel GR, Duong HT, Kim KD, et al. : Biomechanical analysis and review of lateral lumbar fusion constructs. Spine (Phila Pa 1976) 35 (26 Suppl) : S361-S367, 2010 https://doi.org/10.1097/BRS.0b013e318202308b
  7. Cheng L, Nie L, Zhang L : Posterior lumbar interbody fusion versus posterolateral fusion in spondylolisthesis : a prospective controlled study in the Han nationality. Int Orthop 33 : 1043-1047, 2009 https://doi.org/10.1007/s00264-008-0588-x
  8. Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY : An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 15 : 11-18, 2011 https://doi.org/10.3171/2011.2.SPINE10374
  9. Dakwar E, Cardona RF, Smith DA, Uribe JS : Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus 28 : E8, 2010
  10. Dehoux E, Fourati E, Madi K, Reddy B, Segal P : Posterolateral versus interbody fusion in isthmic spondylolisthesis : functional results in 52 cases with a minimum follow-up of 6 years. Acta Orthop Belg 70 : 578-582, 2004
  11. Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG : Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine (Phila Pa 1976) 26 : E122-E129, 2001 https://doi.org/10.1097/00007632-200103150-00004
  12. Faundez AA, Schwender JD, Safriel Y, Gilbert TJ, Mehbod AA, Denis F, et al. : Clinical and radiological outcome of anterior-posterior fusion versus transforaminal lumbar interbody fusion for symptomatic disc degeneration : a retrospective comparative study of 133 patients. Eur Spine J 18 : 203-211, 2009 https://doi.org/10.1007/s00586-008-0845-0
  13. Glassman SD, Carreon L, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, et al. : Posterolateral lumbar spine fusion with INFUSE bone graft. Spine J 7 : 44-49, 2007 https://doi.org/10.1016/j.spinee.2006.06.381
  14. Hee HT, Castro FP Jr, Majd ME, Holt RT, Myers L : Anterior/posterior lumbar fusion versus transforaminal lumbar interbody fusion : analysis of complications and predictive factors. J Spinal Disord 14 : 533-540, 2001 https://doi.org/10.1097/00002517-200112000-00013
  15. Hollowell JP, Vollmer DG, Wilson CR, Pintar FA, Yoganandan N : Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate? Spine (Phila Pa 1976) 21 : 1032-1036, 1996 https://doi.org/10.1097/00007632-199605010-00007
  16. Houten JK, Alexandre LC, Nasser R, Wollowick AL : Nerve injury during the transpsoas approach for lumbar fusion. J Neurosurg Spine 15 : 280-284, 2011 https://doi.org/10.3171/2011.4.SPINE1127
  17. Hsieh PC, Koski TR, O'Shaughnessy BA, Sugrue P, Salehi S, Ondra S, et al. : Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion : implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7 : 379-386, 2007 https://doi.org/10.3171/SPI-07/10/379
  18. Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM : A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis : perioperative outcomes and complications. Spine (Phila Pa 1976) 35 (26 Suppl) : S322-S330, 2010 https://doi.org/10.1097/BRS.0b013e3182022e04
  19. Johnson RD, Valore A, Villaminar A, Comisso M, Balsano M : Pelvic parameters of sagittal balance in extreme lateral interbody fusion for degenerative lumbar disc disease. J Clin Neurosci 20 : 576-581, 2013 https://doi.org/10.1016/j.jocn.2012.05.032
  20. Kepler CK, Huang RC, Sharma AK, Meredith DS, Metitiri O, Sama AA, et al. : Factors influencing segmental lumbar lordosis after lateral transpsoas interbody fusion. Orthop Surg 4 : 71-75, 2012 https://doi.org/10.1111/j.1757-7861.2012.00175.x
  21. Kepler CK, Sharma AK, Huang RC, Meredith DS, Girardi FP, Cammisa FP Jr, et al. : Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine 16 : 329-333, 2012 https://doi.org/10.3171/2012.1.SPINE11528
  22. Kim JS, Kang BU, Lee SH, Jung B, Choi YG, Jeon SH, et al. : Mini-transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion augmented by percutaneous pedicle screw fixation : a comparison of surgical outcomes in adult low-grade isthmic spondylolisthesis. J Spinal Disord Tech 22 : 114-121, 2009 https://doi.org/10.1097/BSD.0b013e318169bff5
  23. Kim KT, Lee SH, Lee YH, Bae SC, Suk KS : Clinical outcomes of 3 fusion methods through the posterior approach in the lumbar spine. Spine (Phila Pa 1976) 31 : 1351-1357; discussion 1358, 2006 https://doi.org/10.1097/01.brs.0000218635.14571.55
  24. Knight RQ, Schwaegler P, Hanscom D, Roh J : Direct lateral lumbar interbody fusion for degenerative conditions : early complication profile. J Spinal Disord Tech 22 : 34-37, 2009 https://doi.org/10.1097/BSD.0b013e3181679b8a
  25. Laws CJ, Coughlin DG, Lotz JC, Serhan HA, Hu SS : Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach : an in vitro study. Spine (Phila Pa 1976) 37 : 819-825, 2012 https://doi.org/10.1097/BRS.0b013e31823551aa
  26. Le TV, Baaj AA, Dakwar E, Burkett CJ, Murray G, Smith DA, et al. : Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976) 37 : 1268-1273, 2012 https://doi.org/10.1097/BRS.0b013e3182458b2f
  27. Le TV, Burkett CJ, Deukmedjian AR, Uribe JS : Postoperative lumbar plexus injury after lumbar retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine (Phila Pa 1976) 38 : E13-E20, 2013 https://doi.org/10.1097/BRS.0b013e318278417c
  28. Lowe TG, Hashim S, Wilson LA, O'Brien MF, Smith DA, Diekmann MJ, et al. : A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine (Phila Pa 1976) 29 : 2389-2394, 2004 https://doi.org/10.1097/01.brs.0000143623.18098.e5
  29. McAfee PC, Regan JJ, Geis WP, Fedder IL : Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine (Phila Pa 1976) 23 : 1476-1484, 1998 https://doi.org/10.1097/00007632-199807010-00009
  30. Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC : Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus 31 : E4, 2011
  31. Moro T, Kikuchi S, Konno S, Yaginuma H : An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine (Phila Pa 1976) 28 : 423-428; discussion 427-428, 2003
  32. Oliveira L, Marchi L, Coutinho E, Pimenta L : A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976) 35 (26 Suppl) : S331-S337, 2010 https://doi.org/10.1097/BRS.0b013e3182022db0
  33. Ozgur BM, Aryan HE, Pimenta L, Taylor WR : Extreme Lateral Interbody Fusion (XLIF) : a novel surgical technique for anterior lumbar interbody fusion. Spine J 6 : 435-443, 2006 https://doi.org/10.1016/j.spinee.2005.08.012
  34. Parker SL, Adogwa O, Paul AR, Anderson WN, Aaronson O, Cheng JS, et al. : Utility of minimum clinically important difference in assessing pain, disability, and health state after transforaminal lumbar interbody fusion for degenerative lumbar spondylolisthesis. J Neurosurg Spine 14 : 598-604, 2011 https://doi.org/10.3171/2010.12.SPINE10472
  35. Potter BK, Freedman BA, Verwiebe EG, Hall JM, Polly DW Jr, Kuklo TR : Transforaminal lumbar interbody fusion : clinical and radiographic results and complications in 100 consecutive patients. J Spinal Disord Tech 18 : 337-346, 2005 https://doi.org/10.1097/01.bsd.0000166642.69189.45
  36. Rajaraman V, Vingan R, Roth P, Heary RF, Conklin L, Jacobs GB : Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg 91 (1 Suppl) : 60-64, 1999
  37. Rodgers WB, Gerber EJ, Patterson J : Intraoperative and early postoperative complications in extreme lateral interbody fusion : an analysis of 600 cases. Spine (Phila Pa 1976) 36 : 26-32, 2011 https://doi.org/10.1097/BRS.0b013e3181e1040a
  38. Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS : Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus 28 : E7, 2010

피인용 문헌

  1. Fundamentals of Clinical Outcomes Assessment for Spinal Disorders: Clinical Outcome Instruments and Applications vol.5, pp.4, 2014, https://doi.org/10.1055/s-0034-1396046
  2. Lateral Lumbar Interbody Fusion in Ambulatory Surgery Centers: Patient Selection and Outcome Measures Compared With an Inhospital Cohort vol.41, pp.8, 2014, https://doi.org/10.1097/brs.0000000000001285
  3. The Biomechanical Study of Extraforaminal Lumbar Interbody Fusion: A Three-Dimensional Finite-Element Analysis vol.2017, pp.None, 2014, https://doi.org/10.1155/2017/9365068
  4. Results of surgical treatment for lumbar spine segmental instability vol.81, pp.6, 2017, https://doi.org/10.17116/neiro201781669-80
  5. Comparison of Clinical and Radiological Outcomes of Lumbar Interbody Fusion Using a Combination of Hydroxyapatite and Demineralized Bone Matrix and Autografts for Lumbar Degenerative Spondylolisthesis vol.11, pp.5, 2014, https://doi.org/10.4184/asj.2017.11.5.706
  6. Kinematic characteristics of lumbar spinous processes during axial rotation in patients with lumbar degenerative disc disease lateral lumbar interbody fusion and intervention vol.18, pp.None, 2014, https://doi.org/10.1186/s12891-017-1504-6
  7. Comparison of pure lateral and oblique lateral inter-body fusion for treatment of lumbar degenerative disk disease: a multicentric cohort study vol.27, pp.suppl2, 2014, https://doi.org/10.1007/s00586-018-5596-y
  8. Complications for minimally invasive lateral interbody arthrodesis: a systematic review and meta-analysis comparing prepsoas and transpsoas approaches vol.30, pp.4, 2019, https://doi.org/10.3171/2018.9.spine18800
  9. Complications for minimally invasive lateral interbody arthrodesis: a systematic review and meta-analysis comparing prepsoas and transpsoas approaches vol.30, pp.4, 2019, https://doi.org/10.3171/2018.9.spine18800
  10. Effect of Cage in Radiological Differences between Direct and Oblique Lateral Interbody Fusion Techniques vol.62, pp.4, 2019, https://doi.org/10.3340/jkns.2018.0142
  11. Predictors of the need for laminectomy after indirect decompression via initial anterior or lateral lumbar interbody fusion vol.32, pp.6, 2020, https://doi.org/10.3171/2019.11.spine19314
  12. Predictors of the need for laminectomy after indirect decompression via initial anterior or lateral lumbar interbody fusion vol.32, pp.6, 2020, https://doi.org/10.3171/2019.11.spine19314
  13. Comparative Effectiveness of Expandable Versus Static Interbody Spacers via MIS LLIF: A 2-Year Radiographic and Clinical Outcomes Study vol.10, pp.8, 2014, https://doi.org/10.1177/2192568219886278
  14. Biomechanical Evaluation of Oblique Lumbar Interbody Fusion with Various Fixation Options: A Finite Element Analysis vol.13, pp.2, 2014, https://doi.org/10.1111/os.12877
  15. Usefulness of Oblique Lumbar Interbody Fusion as Revision Surgery: Comparison of Clinical and Radiological Outcomes Between Primary and Revision Surgery vol.149, pp.None, 2021, https://doi.org/10.1016/j.wneu.2020.12.172