DOI QR코드

DOI QR Code

Genetic Diversity of Echinococcus granulosus in Center of Iran

  • Pestechian, Nader (Department of Medical Parasitology and Mycology Isfahan University of Medical Sciences) ;
  • Safa, Ahmad Hosseini (Department of Medical Parasitology and Mycology Isfahan University of Medical Sciences) ;
  • Tajedini, Mohammadhasan (Department of Clinical Biochemistry, School of Pharmacy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences) ;
  • Rostami-Nejad, Mohammad (Gastroenterology and Liver Disease Research Center, Shahid Beheshti University of Medical Sciences) ;
  • Mousavi, Mohammad (Department of Medical Parasitology and Mycology Isfahan University of Medical Sciences) ;
  • Yousofi, Hosseinali (Department of Medical Parasitology and Mycology Isfahan University of Medical Sciences) ;
  • Javanmard, Shaghayegh Haghjooy (Physiology Research Center, Department of Physiology, Isfahan University of Medical Sciences)
  • Received : 2013.12.07
  • Accepted : 2014.05.22
  • Published : 2014.08.31

Abstract

Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran.

Keywords

References

  1. Zhenghuan W, Xiaoming W, Xiaoqing L. Echinococcosis in China, a review of the epidemiology of Echinococcus spp. Ecohealth 2008; 5: 115-126. https://doi.org/10.1007/s10393-008-0174-0
  2. Sadjjadi SM. Present situation of echinococcosis in the Middle East and Arabic North Africa. Parasitol Int 2006; 55: S197-S202. https://doi.org/10.1016/j.parint.2005.11.030
  3. Torgerson PR, Oguljahan B, Muminov AE, Karaeva RR, Kuttubaev OT, Aminjanov M, Shailkenov B. Present situation of cystic echinococcosis in Central Asia. Parasitol Int 2006; 55: S207-S12. https://doi.org/10.1016/j.parint.2005.11.032
  4. Sharbatkhori M, Harandi MF, Mirhendi H, Hajialilo E, Kia EB. Sequence analysis of cox1 and nad1 genes in Echinococcus granulosus G3 genotype in camels (Camelus dromedarius) from central Iran. Parasitol Res 2011; 108: 521-527. https://doi.org/10.1007/s00436-010-2092-7
  5. Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 1992; 54: 165-173. https://doi.org/10.1016/0166-6851(92)90109-W
  6. Bowles J, McManus DP. Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Mol Biochem Parasitol 1993; 57: 231-239. https://doi.org/10.1016/0166-6851(93)90199-8
  7. Scott J, Stefaniak J, Pawlowski Z, McManus D. Molecular genetic analysis of human cystic hydatid cases from Poland: identification of a new genotypic group (G9). Parasitology 1997; 114: 37-43. https://doi.org/10.1017/S0031182096008062
  8. Thompson R, McManus DP. Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol 2002; 18: 452-457. https://doi.org/10.1016/S1471-4922(02)02358-9
  9. Lavikainen A, Lehtinen M, Meri T, Hirvela-Koski V, Meri S. Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus. Parasitology 2003; 127: 207-215. https://doi.org/10.1017/S0031182003003780
  10. Grosso G, Gruttadauria S, Biondi A, Marventano S, Mistretta A. Worldwide epidemiology of liver hydatidosis including the Mediterranean area. World J Gastroenterol 2012; 18: 1425. https://doi.org/10.3748/wjg.v18.i13.1425
  11. Nakao M, Yanagida T, Okamoto M, Knapp J, Nkouawa A, Sako Y, Ito A. State-of-the-art Echinococcus and Taenia: Phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infect Genet Evol 2010; 10: 444-452. https://doi.org/10.1016/j.meegid.2010.01.011
  12. Adwan GM, Adwan KM, Bdir S, Abuseir S. Molecular characterization of Echinococcus granulosus isolated from sheep in Palestine. Exp parasitol 2013; 134: 195-199. https://doi.org/10.1016/j.exppara.2013.03.024
  13. Singh BB, Sharma JK, Tuli A, Sharma R, Bal MS, Aulakh RS, Gill JPS. Prevalence and morphological characterisation of Echinococcus granulosus from north India. J Parasit Dis 2014; 38: 36-40. https://doi.org/10.1007/s12639-012-0189-x
  14. Cui SJ, Xu LL, Zhang T, Xu M, Yao J, Fang CY, Feng Z, Yanga PY, Hu W, Liu F. Proteomic characterization of larval and adult developmental stages in Echinococcus granulosus reveals novel insight into host-parasite interactions. J Proteomics 2013; 84: 158-175. https://doi.org/10.1016/j.jprot.2013.04.013
  15. Shield JM. Dipylidium caninum, Echinococcus granulosus and Hydatigera taeniaeformis: Histochemical identification of cholinesterases. Exp Parasitol 1969; 25: 217-231. https://doi.org/10.1016/0014-4894(69)90068-X
  16. McManus D. Immunodiagnosis of sheep infections with Echinococcus granulosus: in 35 years where have we come?. Parasite Immunol 2014; 36: 125-130. https://doi.org/10.1111/pim.12072
  17. Maurelli MP, Rinaldi L, Capuano F, Perugini AG, Cringoli G. Development of a real-time PCR for the differentiation of the G1 and G2/G3 genotypes of Echinococcus granulosus. Parasitol Res 2009; 105: 255-259. https://doi.org/10.1007/s00436-009-1388-y
  18. Parija SC. Hydatid fluid as a clinical specimen for the etiological diagnosis of a suspected hydatid cyst. J Parasit Dis 2004; 28: 64-68.
  19. Espy MJ, Uhl J, Sloan L, Buckwalter S, Jones M, Vetter EA, Yao JD, Wengenack NL, Rosenblatt JE, Cockerill FR 3rd, Smith TF. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 2006; 19: 165-256. https://doi.org/10.1128/CMR.19.1.165-256.2006
  20. Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV. Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin Chem 2006; 52: 494-503. https://doi.org/10.1373/clinchem.2005.063438
  21. Nejad MR, Taghipour N, Nochi Z, Mojarad EN, Mohebbi S, Harandi MF, Zali MR. Molecular identification of animal isolates of Echinococcus granulosus from Iran using four mitochondrial genes. J Helminthol 2012; 86: 485-492. https://doi.org/10.1017/S0022149X1100071X
  22. Shahnazi M, Hejazi H, Salehi M, Andalib AR. Molecular characterization of human and animal Echinococcus granulosus isolates in Isfahan, Iran. Acta Trop (Basel) 2011; 117: 47-50. https://doi.org/10.1016/j.actatropica.2010.09.002
  23. Zhang L, Eslami A, Hosseini S, McManus D. Indication of the presence of two distinct strains of Echinococcus granulosus in Iran by mitochondrial DNA markers. Am J Trop Med Hyg 1998; 59: 171-174.
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111-120. https://doi.org/10.1007/BF01731581
  25. Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008; 9: 299-306. https://doi.org/10.1093/bib/bbn017
  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  27. Morsczeck C, Langendorfer D, Schierholz JM. A quantitative real-time PCR assay for the detection of tetR of Tn 10 in Escherichia coli using SYBR Green and the Opticon. J Biochem Biophys Methods 2004; 59: 217-227. https://doi.org/10.1016/j.jbbm.2004.02.003
  28. Harasawa R, Mizusawa H, Fujii M, Yamamoto J, Mukai H, Uemori T, Asada K, Kato I. Rapid detection and differentiation of the major mycoplasma contaminants in cell cultures using real-time PCR with SYBR Green I and melting curve analysis. Med Microbiol Immunol 2005; 49: 859-863. https://doi.org/10.1111/j.1348-0421.2005.tb03675.x
  29. McManus D, Thompson R. Molecular epidemiology of cystic echinococcosis. Parasitology 2003; 127: S37-S51. https://doi.org/10.1017/S0031182003003275
  30. Boubaker G, Macchiaroli N, Prada L, Cucher MA, Rosenzvit MC, Ziadinov I, Deplazes P, Saarma U, Babba H, Gottstein B, Spiliotis M. A Multiplex PCR for the Simultaneous Detection and Genotyping of the Echinococcus granulosus Complex. PLoS Negl Trop Dis 2013; 7: e2017. https://doi.org/10.1371/journal.pntd.0002017
  31. Simsek S, Kaplan M, Ozercan IH. A comprehensive molecular survey of Echinococcus granulosus in formalin-fixed paraffin-embedded tissues in human isolates in Turkey. Parasitol Res 2011; 109: 411-416. https://doi.org/10.1007/s00436-011-2269-8
  32. Pour AA, Hosseini SH, Shayan P. Comparative genotyping of Echinococcus granulosus infecting buffalo in Iran using cox1 gene. Parasitol Res 2011; 108: 1229-1234. https://doi.org/10.1007/s00436-010-2170-x
  33. Parsa F, Harandi MF, Rostami S, Sharbatkhori M. Genotyping Echinococcus granulosus from dogs from Western Iran. Exp Parasitol 2012; 132: 308-312. https://doi.org/10.1016/j.exppara.2012.07.010
  34. Rostami S, Talebi S, Babaei Z, Sharbatkhori M, Ziaali N, Rostami H, Harandi MF. High resolution melting technique for molecular epidemiological studies of cystic echinococcosis: differentiating G1, G3, and G6 genotypes of Echinococcus granulosus sensu lato. Parasitol Res 2013; 112: 3441-3447. https://doi.org/10.1007/s00436-013-3523-z
  35. Rajabloo M, Hosseini SH, Jalousian F. Morphological and molecular characterisation of Echinococcus granulosus from goat isolates in Iran. Acta Trop 2012; 123: 67-71. https://doi.org/10.1016/j.actatropica.2012.03.006
  36. Dousti M, Abdi J, Bakhtiyari S, Mohebali M, Mirhendi S, Rokni M. Genotyping of hydatid cyst isolated from human and domestic animals in Ilam Province, Western Iran using PCR-RFLP. Iran J Parasitol 2013; 8: 47-52.
  37. Youssefi MR, Tabaripour R, Omrani VF, Spotin A, Esfandiari B. Genotypic characterization of Echinococcus granulosus in Iranian goats. Asian Pac J Trop Dis 2013; 3: 362-366. https://doi.org/10.1016/S2222-1808(13)60085-7
  38. Nakao M, McManus D, Schantz P, Craig P, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 2007; 134: 713-722. https://doi.org/10.1017/S0031182006001934

Cited by

  1. A novel PCR-RFLP assay for molecular characterization of Echinococcus granulosus sensu lato and closely related species in developing countries vol.115, pp.10, 2014, https://doi.org/10.1007/s00436-016-5143-x
  2. Prevalence and Molecular Characterization of Hydatid Cyst Isolates from Cattle in Egypt vol.11, pp.12, 2014, https://doi.org/10.3923/ajava.2016.794.804
  3. Genotype characterization of livestock and human cystic echinococcosis in Mazandaran province, Iran vol.93, pp.2, 2014, https://doi.org/10.1017/s0022149x1800010x
  4. Echinococcus granulosus genotypes in Iran: a systematic review vol.93, pp.2, 2019, https://doi.org/10.1017/s0022149x18000275
  5. Isolated Human and Livestock Echinococcus granulosus Genotypes Using Real-Time PCR of cox1 Gene in Northeast Iran vol.64, pp.3, 2014, https://doi.org/10.2478/s11686-019-00117-w
  6. Genetic survey of cystic echinococcosis in farm animals in Oman vol.52, pp.1, 2014, https://doi.org/10.1007/s11250-019-02019-5
  7. Epidemiological and molecular studies on Echinococcus granulosus from free-roaming dogs in Southeast Iran vol.13, pp.4, 2014, https://doi.org/10.14202/vetworld.2020.739-745
  8. Echinococcoses in Iran, Turkey, and Pakistan: Old Diseases in the New Millennium vol.34, pp.3, 2014, https://doi.org/10.1128/cmr.00290-20
  9. Echinococcus granulosus sensu stricto G1 is the predominant genotype in human and livestock isolates from Turkey and Iran, based on mitochondrial nad5 gene differentiation vol.14, pp.1, 2014, https://doi.org/10.1186/s13071-021-04869-1