DOI QR코드

DOI QR Code

Caenorhabditis elegans: A Model System for Anti-Cancer Drug Discovery and Therapeutic Target Identification

  • Kobet, Robert A. (Department of Medicine, Department of Oncology, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University) ;
  • Pan, Xiaoping (Department of Biology, East Carolina University) ;
  • Zhang, Baohong (Department of Biology, East Carolina University) ;
  • Pak, Stephen C. (Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC) ;
  • Asch, Adam S. (Department of Medicine, Department of Oncology, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University) ;
  • Lee, Myon-Hee (Department of Medicine, Department of Oncology, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University)
  • Received : 2014.07.14
  • Accepted : 2014.08.18
  • Published : 2014.09.30

Abstract

The nematode Caenorhabditis elegans (C. elegans) offers a unique opportunity for biological and basic medical researches due to its genetic tractability and well-defined developmental lineage. It also provides an exceptional model for genetic, molecular, and cellular analysis of human disease-related genes. Recently, C. elegans has been used as an ideal model for the identification and functional analysis of drugs (or small-molecules) in vivo. In this review, we describe conserved oncogenic signaling pathways (Wnt, Notch, and Ras) and their potential roles in the development of cancer stem cells. During C. elegans germline development, these signaling pathways regulate multiple cellular processes such as germline stem cell niche specification, germline stem cell maintenance, and germ cell fate specification. Therefore, the aberrant regulations of these signaling pathways can cause either loss of germline stem cells or overproliferation of a specific cell type, resulting in sterility. This sterility phenotype allows us to identify drugs that can modulate the oncogenic signaling pathways directly or indirectly through a high-throughput screening. Current in vivo or in vitro screening methods are largely focused on the specific core signaling components. However, this phenotype-based screening will identify drugs that possibly target upstream or downstream of core signaling pathways as well as exclude toxic effects. Although phenotype-based drug screening is ideal, the identification of drug targets is a major challenge. We here introduce a new technique, called Drug Affinity Responsive Target Stability (DARTS). This innovative method is able to identify the target of the identified drug. Importantly, signaling pathways and their regulators in C. elegans are highly conserved in most vertebrates, including humans. Therefore, C. elegans will provide a great opportunity to identify therapeutic drugs and their targets, as well as to understand mechanisms underlying the formation of cancer.

Keywords

References

  1. Abel, E. V., Kim, E. J., Wu, J., Hynes, M., Bednar, F., Proctor, E., Wang, L., Dziubinski, M. L. and Simeone, D. M. (2014). The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS One 9, e91983. https://doi.org/10.1371/journal.pone.0091983
  2. Ahn, D., Cha, D. S., Lee, E. B., Kim, B. J., Lee, S. Y., Jeon, H., Ahn, M. S., Lim, H. W., Lee, H. Y. and Kim, D. K. (2013) The longevity properties of 1,2,3,4,6-Penta-O-Galloyl-beta-D-Glucose from Curcuma longa in Caenorhabditis elegans. Biomol. Ther. 21, 442-446. https://doi.org/10.4062/biomolther.2013.073
  3. Allenspach, E. J., Maillard, I., Aster, J. C. and Pear, W. S. (2002) Notch signaling in cancer. Cancer Biol. Ther. 1, 466-476. https://doi.org/10.4161/cbt.1.5.159
  4. Anastassopoulou, C. G., Fuchs, B. B. and Mylonakis, E. (2011) Caenorhabditis elegans-based model systems for antifungal drug discovery. Curr. Pharm. Des. 17, 1225-1233. https://doi.org/10.2174/138161211795703753
  5. Artavanis-Tsakonas, S., Rand, M. D. and Lake, R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284, 770-776. https://doi.org/10.1126/science.284.5415.770
  6. Austin, J. and Kimble, J. (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51, 589-599. https://doi.org/10.1016/0092-8674(87)90128-0
  7. Avila, J. L. and Kissil, J. L. (2013) Notch signaling in pancreatic cancer: oncogene or tumor suppressor? Trends Mol. Med. 19, 320-327. https://doi.org/10.1016/j.molmed.2013.03.003
  8. Bae, Y. K., Sung, J. Y., Kim, Y. N., Kim, S., Hong, K. M., Kim, H. T., Choi, M. S., Kwon, J. Y. and Shim, J. (2012) An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs. PLoS One 7, e42441. https://doi.org/10.1371/journal.pone.0042441
  9. Bao, B., Wang, Z., Ali, S., Kong, D., Li, Y., Ahmad, A., Banerjee, S., Azmi, A. S., Miele, L. and Sarkar, F. H. (2011) Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 307, 26-36. https://doi.org/10.1016/j.canlet.2011.03.012
  10. Beitel, G. J., Clark, S. G. and Horvitz, H. R. (1990) Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature 348, 503-509. https://doi.org/10.1038/348503a0
  11. Benson, J. A., Cummings, E. E., O'Reilly, L. P., Lee, M. H. and Pak, S. C. (2014) A high-content assay for identifying small molecules that reprogram C. elegans germ cell fate. Methods 68, 529-535. https://doi.org/10.1016/j.ymeth.2014.05.011
  12. Berry, L. W., Westlund, B. and Schedl, T. (1997) Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124, 925-936.
  13. Berset, T., Hoier, E. F., Battu, G., Canevascini, S. and Hajnal, A. (2001) Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 291, 1055-1058. https://doi.org/10.1126/science.1055642
  14. Birchmeier, W. (2011) Stem cells: Orphan receptors find a home. Nature 476, 287-288. https://doi.org/10.1038/476287a
  15. Blelloch, R., Anna-Arriola, S. S., Gao, D., Li, Y., Hodgkin, J. and Kimble, J. (1999) The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Dev. Biol. 216, 382-393. https://doi.org/10.1006/dbio.1999.9491
  16. Blelloch, R. and Kimble, J. (1999) Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature 399, 586-590. https://doi.org/10.1038/21196
  17. Byrd, D. T. and Kimble, J. (2009) Scratching the niche that controls Caenorhabditis elegans germline stem cells. Semin. Cell Dev. Biol. 20, 1107-1113. https://doi.org/10.1016/j.semcdb.2009.09.005
  18. Byrd, D. T., Knobel, K., Affeldt, K., Crittenden, S. L. and Kimble, J. (2014) A DTC niche plexus surrounds the germline stem cell pool in Caenorhabditis elegans. PloS One 9, e88372. https://doi.org/10.1371/journal.pone.0088372
  19. Cha, D. S., Datla, U. S., Hollis, S. E., Kimble, J. and Lee, M. H. (2012) The Ras-ERK MAPK regulatory network controls dedifferentiation in Caenorhabditis elegans germline. Biochim. Biophys. Acta 1823, 1847-1855. https://doi.org/10.1016/j.bbamcr.2012.07.006
  20. Chamorro, M. N., Schwartz, D. R., Vonica, A., Brivanlou, A. H., Cho, K. R. and Varmus, H. E. (2005) FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J. 24, 73-84. https://doi.org/10.1038/sj.emboj.7600460
  21. Chen, P. H., Chen, X., Lin, Z., Fang, D. and He, X. (2013) The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev. 27, 1345-1350. https://doi.org/10.1101/gad.219915.113
  22. Datla, U. S., Scovill, N. C., Brokamp, A. J., Kim, E., Asch, A. S. and Lee, M. H. (2014) Role of PUF-8/PUF protein in stem cell control, sperm-oocyte decision and cell fate reprogramming. J. Cell. Physiol. 229, 1306-1311. https://doi.org/10.1002/jcp.24618
  23. Duncia, J. V., Santella, J. B., 3rd, Higley, C. A., Pitts, W. J., Wityak, J., Frietze, W. E., Rankin, F. W., Sun, J. H., Earl, R. A., Tabaka, A. C., Teleha, C. A., Blom, K. F., Favata, M. F., Manos, E. J., Daulerio, A. J., Stradley, D. A., Horiuchi, K., Copeland, R. A., Scherle, P. A., Trzaskos, J. M., Magolda, R. L., Trainor, G. L., Wexler, R. R., Hobbs, F. W. and Olson, R. E. (1998) MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg. Med. Chem. Lett. 8, 2839-2844. https://doi.org/10.1016/S0960-894X(98)00522-8
  24. Eckmann, C. R., Kraemer, B., Wickens, M. and Kimble, J. (2002) GLD-3, a bicaudal-C homolog that inhibits FBF to control germline sex determination in C. elegans. Dev. Cell 3, 697-710. https://doi.org/10.1016/S1534-5807(02)00322-2
  25. Eisenmann, D. M. (2005) Wnt signaling. WormBook 1-17.
  26. Ewbank, J. J. and Zugasti, O. (2011) C. elegans: model host and tool for antimicrobial drug discovery. Dis. Model Mech. 4, 300-304. https://doi.org/10.1242/dmm.006684
  27. Fan, X., Matsui, W., Khaki, L., Stearns, D., Chun, J., Li, Y. M. and Eberhart, C. G. (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66, 7445-7452. https://doi.org/10.1158/0008-5472.CAN-06-0858
  28. Favata, M. F., Horiuchi, K. Y., Manos, E. J., Daulerio, A. J., Stradley, D. A., Feeser, W. S., Van Dyk, D. E., Pitts, W. J., Earl, R. A., Hobbs, F., Copeland, R. A., Magolda, R. L., Scherle, P. A. and Trzaskos, J. M. (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623-18632. https://doi.org/10.1074/jbc.273.29.18623
  29. Feng, Z., Li, W., Ward, A., Piggott, B. J., Larkspur, E. R., Sternberg, P. W. and Xu, X. Z. (2006) A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127, 621-633. https://doi.org/10.1016/j.cell.2006.09.035
  30. Ferrando, A. A. (2009) The role of NOTCH1 signaling in T-ALL. Hematology Am. Soc. Hematol. Educ. Program, 353-361.
  31. Galluzzo, P. and Bocchetta, M. (2011) Notch signaling in lung cancer. Expert Rev. Anticancer Ther. 11, 533-540. https://doi.org/10.1586/era.10.158
  32. Greenwald, I. (2005) LIN-12/Notch signaling in C. elegans. Worm-Book, 1-16.
  33. Hajnal, A. and Berset, T. (2002) The C. elegans MAPK phosphatase LIP-1 is required for the G(2)/M meiotic arrest of developing oocytes. EMBO J. 21, 4317-4326. https://doi.org/10.1093/emboj/cdf430
  34. Hara, M. and Han, M. (1995) Ras farnesyltransferase inhibitors suppress the phenotype resulting from an activated ras mutation in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 92, 3333-3337. https://doi.org/10.1073/pnas.92.8.3333
  35. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B. and Kinzler, K. W. (1998) Identification of c-MYC as a target of the APC pathway. Science 281, 1509-1512. https://doi.org/10.1126/science.281.5382.1509
  36. Henderson, S. T., Gao, D., Lambie, E. J. and Kimble, J. (1994) lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120, 2913-2924.
  37. Holland, J. D., Klaus, A., Garratt, A. N. and Birchmeier, W. (2013) Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254-264. https://doi.org/10.1016/j.ceb.2013.01.004
  38. Hughes, D. P. (2009) How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat. Res. 152, 479-496. https://doi.org/10.1007/978-1-4419-0284-9_28
  39. James, R. G., Conrad, W. H. and Moon, R. T. (2008) Beta-cateninindependent Wnt pathways: signals, core proteins, and effectors. Methods Mol. Biol. 468, 131-144. https://doi.org/10.1007/978-1-59745-249-6_10
  40. Katoh, M. (2008) WNT signaling in stem cell biology and regenerative medicine. Curr. Drug Targets 9, 565-570. https://doi.org/10.2174/138945008784911750
  41. Kershner, A. M., Shin, H., Hansen, T. J. and Kimble, J. (2014) Discovery of two GLP-1/Notch target genes that account for the role of GLP-1/Notch signaling in stem cell maintenance. Proc. Natl. Acad. Sci. U.S.A. 111, 3739-3744. https://doi.org/10.1073/pnas.1401861111
  42. Kidd, A. R., 3rd, Miskowski, J. A., Siegfried, K. R., Sawa, H. and Kimble, J. (2005) A beta-catenin identified by functional rather than sequence criteria and its role in Wnt/MAPK signaling. Cell 121, 761-772. https://doi.org/10.1016/j.cell.2005.03.029
  43. Kimble, J. and Crittenden, S. L. (2005) Germline proliferation and its control. WormBook, 1-14.
  44. Kimble, J. and Crittenden, S. L. (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 23, 405-433. https://doi.org/10.1146/annurev.cellbio.23.090506.123326
  45. Lackner, M. R. and Kim, S. K. (1998) Genetic analysis of the Caenorhabditis elegans MAP kinase gene mpk-1. Genetics 150, 103-117.
  46. Lam, N., Chesney, M. A. and Kimble, J. (2006) Wnt signaling and CEH-22/tinman/Nkx2.5 specify a stem cell niche in C. elegans. Curr. Biol. 16, 287-295. https://doi.org/10.1016/j.cub.2005.12.015
  47. Lamont, L. B., Crittenden, S. L., Bernstein, D., Wickens, M. and Kimble, J. (2004) FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev. Cell 7, 697-707. https://doi.org/10.1016/j.devcel.2004.09.013
  48. Lee, M. H., Cha, D. S., Mamillapalli, S. S., Kwon, Y. C. and Koo, H. S. (2014) Transgene-mediated co-suppression of DNA topoisomerase-1 gene in Caenorhabditis elegans. Int. Biochem. Mol. Biol. 5, 11-20.
  49. Lee, M. H., Hook, B., Lamont, L. B., Wickens, M. and Kimble, J. (2006) LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J. 25, 88-96. https://doi.org/10.1038/sj.emboj.7600901
  50. Lee, M. H., Hook, B., Pan, G., Kershner, A. M., Merritt, C., Seydoux, G., Thomson, J. A., Wickens, M. and Kimble, J. (2007a) Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet. 3, e233. https://doi.org/10.1371/journal.pgen.0030233
  51. Lee, M. H., Ohmachi, M., Arur, S., Nayak, S., Francis, R., Church, D., Lambie, E. and Schedl, T. (2007b) Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177, 2039-2062. https://doi.org/10.1534/genetics.107.081356
  52. Lino, M. M., Merlo, A. and Boulay, J. L. (2010) Notch signaling in glioblastoma: a developmental drug target? BMC Med. 8, 72. https://doi.org/10.1186/1741-7015-8-72
  53. Liu, J., Sato, C., Cerletti, M. and Wagers, A. (2010) Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr. Top. Dev. Biol. 92, 367-409. https://doi.org/10.1016/S0070-2153(10)92012-7
  54. Lomenick, B., Hao, R., Jonai, N., Chin, R. M., Aghajan, M., Warburton, S., Wang, J., Wu, R. P., Gomez, F., Loo, J. A., Wohlschlegel, J. A., Vondriska, T. M., Pelletier, J., Herschman, H. R., Clardy, J., Clarke, C. F. and Huang, J. (2009) Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. U.S.A. 106, 21984-21989. https://doi.org/10.1073/pnas.0910040106
  55. Lomenick, B., Jung, G., Wohlschlegel, J. A. and Huang, J. (2011) Target identification using drug affinity responsive target stability (DARTS). Curr. Protoc. Chem. Biol. 3, 163-180.
  56. Lopez, A. L., 3rd, Chen, J., Joo, H. J., Drake, M., Shidate, M., Kseib, C. and Arur, S. (2013) DAF-2 and ERK couple nutrient availability to meiotic progression during Caenorhabditis elegans oogenesis. Dev. Cell 27, 227-240. https://doi.org/10.1016/j.devcel.2013.09.008
  57. Lublin, A. L. and Link, C. D. (2013) Alzheimer's disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for beta-amyloid peptide-induced toxicity. Drug Discov. Today Technol. 10, e115-119. https://doi.org/10.1016/j.ddtec.2012.02.002
  58. Maine, E. M. and Kimble, J. (1989) Identification of genes that interact with glp-1, a gene required for inductive cell interactions in Caenorhabditis elegans. Development 106, 133-143.
  59. Marshall, M. (1995) Interactions between Ras and Raf: key regulatory proteins in cellular transformation. Mol. Reprod. Dev. 42, 493-499. https://doi.org/10.1002/mrd.1080420418
  60. Miyamoto, S. and Rosenberg, D. W. (2011) Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci. 102, 1938-1942. https://doi.org/10.1111/j.1349-7006.2011.02049.x
  61. Moon, B. S., Jeong, W. J., Park, J., Kim, T. I., Min do, S. and Choi, K. Y. (2014) Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/beta-catenin signaling. J. Natl. Cancer Inst. 106, djt373. https://doi.org/10.1093/jnci/djt373
  62. Morgan, C. T., Lee, M. H. and Kimble, J. (2010) Chemical reprogramming of Caenorhabditis elegans germ cell fate. Nat. Chem. Biol. 6, 102-104. https://doi.org/10.1038/nchembio.282
  63. Nadarajan, S., Govindan, J. A., McGovern, M., Hubbard, E. J. and Greenstein, D. (2009) MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development 136, 2223-2234. https://doi.org/10.1242/dev.034603
  64. Nusse, R., Fuerer, C., Ching, W., Harnish, K., Logan, C., Zeng, A., ten Berge, D. and Kalani, Y. (2008) Wnt signaling and stem cell control. Cold Spring Harb. Symp. Quant. Biol. 73, 59-66. https://doi.org/10.1101/sqb.2008.73.035
  65. Nykamp, K., Lee, M. H. and Kimble, J. (2008) C. elegans La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis. RNA 14, 1378-1389. https://doi.org/10.1261/rna.1066008
  66. O'Reilly, L. P., Luke, C. J., Perlmutter, D. H., Silverman, G. A. and Pak, S. C. (2014) C. elegans in high-throughput drug discovery. Adv. Drug Deliv. Rev. 69-70, 247-253. https://doi.org/10.1016/j.addr.2013.12.001
  67. Okabe, H., Lee, S. H., Phuchareon, J., Albertson, D. G., McCormick, F. and Tetsu, O. (2006) A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS One 1, e128. https://doi.org/10.1371/journal.pone.0000128
  68. Pennica, D., Swanson, T. A., Welsh, J. W., Roy, M. A., Lawrence, D. A., Lee, J., Brush, J., Taneyhill, L. A., Deuel, B., Lew, M., Watanabe, C., Cohen, R. L., Melhem, M. F., Finley, G. G., Quirke, P., Goddard, A. D., Hillan, K. J., Gurney, A. L., Botstein, D. and Levine, A. J. (1998) WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc. Natl. Acad. Sci. U.S.A. 95, 14717-14722. https://doi.org/10.1073/pnas.95.25.14717
  69. Pepper, A. S., Killian, D. J. and Hubbard, E. J. (2003a) Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics 163, 115-132.
  70. Pepper, A. S., Lo, T. W., Killian, D. J., Hall, D. H. and Hubbard, E. J. (2003b) The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev. Biol. 259, 336-350. https://doi.org/10.1016/S0012-1606(03)00203-3
  71. Petcherski, A. G. and Kimble, J. (2000) LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405, 364-368. https://doi.org/10.1038/35012645
  72. Phillips, B. T., Kidd, A. R., 3rd, King, R., Hardin, J. and Kimble, J. (2007) Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/ TCF controls asymmetric divisions in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 104, 3231-3236. https://doi.org/10.1073/pnas.0611507104
  73. Reedijk, M. (2012) Notch signaling and breast cancer. Adv. Exp. Med. Biol. 727, 241-257. https://doi.org/10.1007/978-1-4614-0899-4_18
  74. Reya, T. and Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature 434, 843-850. https://doi.org/10.1038/nature03319
  75. Ristorcelli, E. and Lombardo, D. (2010) Targeting Notch signaling in pancreatic cancer. Expert Opin. Ther. Targets 14, 541-552. https://doi.org/10.1517/14728221003769895
  76. Saxena, N., Lahiri, S. S., Hambarde, S. and Tripathi, R. P. (2008) RAS: target for cancer therapy. Cancer Invest. 26, 948-955. https://doi.org/10.1080/07357900802087275
  77. Schouest, K. R., Kurasawa, Y., Furuta, T., Hisamoto, N., Matsumoto, K. and Schumacher, J. M. (2009) The germinal center kinase GCK-1 is a negative regulator of MAP kinase activation and apoptosis in the C. elegans germline. PLoS One 4, e7450. https://doi.org/10.1371/journal.pone.0007450
  78. Schulze, W. X., Deng, L. and Mann, M. (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1, 2005 0008.
  79. Sellings, L., Pereira, S., Qian, C., Dixon-McDougall, T., Nowak, C., Zhao, B., Tyndale, R. F. and van der Kooy, D. (2013) Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15. Eur. J. Neurosci. 37, 743-756. https://doi.org/10.1111/ejn.12099
  80. Siegfried, K. R. and Kimble, J. (2002) POP-1 controls axis formation during early gonadogenesis in C. elegans. Development 129, 443-453.
  81. Smith, M. A., Jr., Zhang, Y., Polli, J. R., Wu, H., Zhang, B., Xiao, P., Farwell, M. A. and Pan, X. (2013) Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: identification of novel gene targets. Reprod. Toxicol. 40, 69-75. https://doi.org/10.1016/j.reprotox.2013.05.007
  82. Squiban, B. and Kurz, C. L. (2011) C. elegans: an all in one model for antimicrobial drug discovery. Curr. Drug Targets 12, 967-977. https://doi.org/10.2174/138945011795677854
  83. Sun, W., Gaykalova, D. A., Ochs, M. F., Mambo, E., Arnaoutakis, D., Liu, Y., Loyo, M., Agrawal, N., Howard, J., Li, R., Ahn, S., Fertig, E., Sidransky, D., Houghton, J., Buddavarapu, K., Sanford, T., Choudhary, A., Darden, W., Adai, A., Latham, G., Bishop, J., Sharma, R., Westra, W. H., Hennessey, P., Chung, C. H. and Califano, J. A. (2014) Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 74, 1091-1104. https://doi.org/10.1158/0008-5472.CAN-13-1259
  84. Sundaram, M. V. (2006) RTK/Ras/MAPK signaling. WormBook, 1-19.
  85. Taki, F. A., Pan, X. and Zhang, B. (2014) Chronic nicotine exposure systemically alters microRNA expression profiles during postembryonic stages in Caenorhabditis elegans. J. Cell. Physiol. 229, 79-89.
  86. Tamura, Y., Simizu, S. and Osada, H. (2004) The phosphorylation status and anti-apoptotic activity of Bcl-2 are regulated by ERK and protein phosphatase 2A on the mitochondria. FEBS Lett. 569, 249-255. https://doi.org/10.1016/j.febslet.2004.06.003
  87. Tetsu, O. and McCormick, F. (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426. https://doi.org/10.1038/18884
  88. Tilmann, C. and Kimble, J. (2005) Cyclin D regulation of a sexually dimorphic asymmetric cell division. Dev. Cell 9, 489-499. https://doi.org/10.1016/j.devcel.2005.09.004
  89. Towatari, M., Ciro, M., Ottolenghi, S., Tsuzuki, S. and Enver, T. (2004) Involvement of mitogen-activated protein kinase in the cytokineregulated phosphorylation of transcription factor GATA-1. Hematol. J. 5, 262-272. https://doi.org/10.1038/sj.thj.6200345
  90. Vaid, S., Ariz, M., Chaturbedi, A., Kumar, G. A. and Subramaniam, K. (2013) PUF-8 negatively regulates RAS/MAPK signalling to promote differentiation of C. elegans germ cells. Development 140, 1645-1654. https://doi.org/10.1242/dev.088013
  91. Visvader, J. E. and Lindeman, G. J. (2012) Cancer stem cells: current status and evolving complexities. Cell stem cell 10, 717-728. https://doi.org/10.1016/j.stem.2012.05.007
  92. Wang, D., Huang, B., Zhang, S., Yu, X., Wu, W. and Wang, X. (2013) Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev. 27, 1339-1344. https://doi.org/10.1101/gad.219360.113
  93. Wend, P., Holland, J. D., Ziebold, U. and Birchmeier, W. (2010) Wnt signaling in stem and cancer stem cells. Semin. Cell Dev. Biol. 21, 855-863. https://doi.org/10.1016/j.semcdb.2010.09.004
  94. Whelan, J. T., Hollis, S. E., Cha, D. S., Asch, A. S. and Lee, M. H. (2012) Post-transcriptional regulation of the Ras-ERK/MAPK signaling pathway. J. Cell. Physiol. 227, 1235-1241. https://doi.org/10.1002/jcp.22899
  95. Yoo, A. S., Bais, C. and Greenwald, I. (2004) Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science 303, 663-666. https://doi.org/10.1126/science.1091639
  96. Zhao, Y., Bjorbaek, C. and Moller, D. E. (1996) Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases. J. Biol. Chem. 271, 29773-29779. https://doi.org/10.1074/jbc.271.47.29773

Cited by

  1. The Annona muricata leaf ethanol extract affects mobility and reproduction in mutant strain NB327 Caenorhabditis elegans vol.10, 2017, https://doi.org/10.1016/j.bbrep.2017.04.016
  2. N (4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2′-deoxycytidine as a potential boron delivery agent with respect to glioblastoma vol.95, 2017, https://doi.org/10.1016/j.biopha.2017.08.134
  3. A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification vol.49, pp.2, 2016, https://doi.org/10.5483/BMBRep.2016.49.2.135
  4. Three-dimensional cell culture models for anticancer drug screening: Worth the effort? 2017, https://doi.org/10.1002/jcp.26052
  5. The development of high-content screening (HCS) technology and its importance to drug discovery vol.11, pp.5, 2016, https://doi.org/10.1517/17460441.2016.1165203
  6. Whole animal HTS of small molecules for antifungal compounds vol.11, pp.2, 2016, https://doi.org/10.1517/17460441.2016.1122591
  7. Lifespan-extending and stress resistance properties of brazilin from Caesalpinia sappan in Caenorhabditis elegans vol.40, pp.7, 2017, https://doi.org/10.1007/s12272-017-0920-3
  8. NF-Y in invertebrates vol.1860, pp.5, 2017, https://doi.org/10.1016/j.bbagrm.2016.10.008
  9. Study of the Effect of Neutral Polysaccharides from Rehmannia glutinosa on Lifespan of Caenorhabditis elegans vol.24, pp.24, 2014, https://doi.org/10.3390/molecules24244592
  10. Evaluation of anticancer potential of Eleusine indica methanolic leaf extract through Ras- and Wnt-related pathways using transgenic Caenorhabditis elegans strains vol.11, pp.1, 2014, https://doi.org/10.4103/jpnr.jpnr_7_20
  11. 구증구포 도라지 Ethyl Acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과 vol.51, pp.4, 2014, https://doi.org/10.22889/kjp.2020.51.4.325
  12. Antiaging Effects of Vicatia thibetica de Boiss Root Extract on Caenorhabditis elegans and Doxorubicin-Induced Premature Aging in Adult Mice vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/9942090
  13. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila , Zebrafish, and C. elegans Models vol.22, pp.16, 2014, https://doi.org/10.3390/ijms22168465
  14. 귀리 Ethyl acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과 vol.52, pp.4, 2014, https://doi.org/10.22889/kjp.2021.52.4.251