References
- Abel, E. V., Kim, E. J., Wu, J., Hynes, M., Bednar, F., Proctor, E., Wang, L., Dziubinski, M. L. and Simeone, D. M. (2014). The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS One 9, e91983. https://doi.org/10.1371/journal.pone.0091983
- Ahn, D., Cha, D. S., Lee, E. B., Kim, B. J., Lee, S. Y., Jeon, H., Ahn, M. S., Lim, H. W., Lee, H. Y. and Kim, D. K. (2013) The longevity properties of 1,2,3,4,6-Penta-O-Galloyl-beta-D-Glucose from Curcuma longa in Caenorhabditis elegans. Biomol. Ther. 21, 442-446. https://doi.org/10.4062/biomolther.2013.073
- Allenspach, E. J., Maillard, I., Aster, J. C. and Pear, W. S. (2002) Notch signaling in cancer. Cancer Biol. Ther. 1, 466-476. https://doi.org/10.4161/cbt.1.5.159
- Anastassopoulou, C. G., Fuchs, B. B. and Mylonakis, E. (2011) Caenorhabditis elegans-based model systems for antifungal drug discovery. Curr. Pharm. Des. 17, 1225-1233. https://doi.org/10.2174/138161211795703753
- Artavanis-Tsakonas, S., Rand, M. D. and Lake, R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284, 770-776. https://doi.org/10.1126/science.284.5415.770
- Austin, J. and Kimble, J. (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51, 589-599. https://doi.org/10.1016/0092-8674(87)90128-0
- Avila, J. L. and Kissil, J. L. (2013) Notch signaling in pancreatic cancer: oncogene or tumor suppressor? Trends Mol. Med. 19, 320-327. https://doi.org/10.1016/j.molmed.2013.03.003
- Bae, Y. K., Sung, J. Y., Kim, Y. N., Kim, S., Hong, K. M., Kim, H. T., Choi, M. S., Kwon, J. Y. and Shim, J. (2012) An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs. PLoS One 7, e42441. https://doi.org/10.1371/journal.pone.0042441
- Bao, B., Wang, Z., Ali, S., Kong, D., Li, Y., Ahmad, A., Banerjee, S., Azmi, A. S., Miele, L. and Sarkar, F. H. (2011) Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 307, 26-36. https://doi.org/10.1016/j.canlet.2011.03.012
- Beitel, G. J., Clark, S. G. and Horvitz, H. R. (1990) Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature 348, 503-509. https://doi.org/10.1038/348503a0
- Benson, J. A., Cummings, E. E., O'Reilly, L. P., Lee, M. H. and Pak, S. C. (2014) A high-content assay for identifying small molecules that reprogram C. elegans germ cell fate. Methods 68, 529-535. https://doi.org/10.1016/j.ymeth.2014.05.011
- Berry, L. W., Westlund, B. and Schedl, T. (1997) Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124, 925-936.
- Berset, T., Hoier, E. F., Battu, G., Canevascini, S. and Hajnal, A. (2001) Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 291, 1055-1058. https://doi.org/10.1126/science.1055642
- Birchmeier, W. (2011) Stem cells: Orphan receptors find a home. Nature 476, 287-288. https://doi.org/10.1038/476287a
- Blelloch, R., Anna-Arriola, S. S., Gao, D., Li, Y., Hodgkin, J. and Kimble, J. (1999) The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Dev. Biol. 216, 382-393. https://doi.org/10.1006/dbio.1999.9491
- Blelloch, R. and Kimble, J. (1999) Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature 399, 586-590. https://doi.org/10.1038/21196
- Byrd, D. T. and Kimble, J. (2009) Scratching the niche that controls Caenorhabditis elegans germline stem cells. Semin. Cell Dev. Biol. 20, 1107-1113. https://doi.org/10.1016/j.semcdb.2009.09.005
- Byrd, D. T., Knobel, K., Affeldt, K., Crittenden, S. L. and Kimble, J. (2014) A DTC niche plexus surrounds the germline stem cell pool in Caenorhabditis elegans. PloS One 9, e88372. https://doi.org/10.1371/journal.pone.0088372
- Cha, D. S., Datla, U. S., Hollis, S. E., Kimble, J. and Lee, M. H. (2012) The Ras-ERK MAPK regulatory network controls dedifferentiation in Caenorhabditis elegans germline. Biochim. Biophys. Acta 1823, 1847-1855. https://doi.org/10.1016/j.bbamcr.2012.07.006
- Chamorro, M. N., Schwartz, D. R., Vonica, A., Brivanlou, A. H., Cho, K. R. and Varmus, H. E. (2005) FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J. 24, 73-84. https://doi.org/10.1038/sj.emboj.7600460
- Chen, P. H., Chen, X., Lin, Z., Fang, D. and He, X. (2013) The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev. 27, 1345-1350. https://doi.org/10.1101/gad.219915.113
- Datla, U. S., Scovill, N. C., Brokamp, A. J., Kim, E., Asch, A. S. and Lee, M. H. (2014) Role of PUF-8/PUF protein in stem cell control, sperm-oocyte decision and cell fate reprogramming. J. Cell. Physiol. 229, 1306-1311. https://doi.org/10.1002/jcp.24618
- Duncia, J. V., Santella, J. B., 3rd, Higley, C. A., Pitts, W. J., Wityak, J., Frietze, W. E., Rankin, F. W., Sun, J. H., Earl, R. A., Tabaka, A. C., Teleha, C. A., Blom, K. F., Favata, M. F., Manos, E. J., Daulerio, A. J., Stradley, D. A., Horiuchi, K., Copeland, R. A., Scherle, P. A., Trzaskos, J. M., Magolda, R. L., Trainor, G. L., Wexler, R. R., Hobbs, F. W. and Olson, R. E. (1998) MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg. Med. Chem. Lett. 8, 2839-2844. https://doi.org/10.1016/S0960-894X(98)00522-8
- Eckmann, C. R., Kraemer, B., Wickens, M. and Kimble, J. (2002) GLD-3, a bicaudal-C homolog that inhibits FBF to control germline sex determination in C. elegans. Dev. Cell 3, 697-710. https://doi.org/10.1016/S1534-5807(02)00322-2
- Eisenmann, D. M. (2005) Wnt signaling. WormBook 1-17.
- Ewbank, J. J. and Zugasti, O. (2011) C. elegans: model host and tool for antimicrobial drug discovery. Dis. Model Mech. 4, 300-304. https://doi.org/10.1242/dmm.006684
- Fan, X., Matsui, W., Khaki, L., Stearns, D., Chun, J., Li, Y. M. and Eberhart, C. G. (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66, 7445-7452. https://doi.org/10.1158/0008-5472.CAN-06-0858
- Favata, M. F., Horiuchi, K. Y., Manos, E. J., Daulerio, A. J., Stradley, D. A., Feeser, W. S., Van Dyk, D. E., Pitts, W. J., Earl, R. A., Hobbs, F., Copeland, R. A., Magolda, R. L., Scherle, P. A. and Trzaskos, J. M. (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623-18632. https://doi.org/10.1074/jbc.273.29.18623
- Feng, Z., Li, W., Ward, A., Piggott, B. J., Larkspur, E. R., Sternberg, P. W. and Xu, X. Z. (2006) A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127, 621-633. https://doi.org/10.1016/j.cell.2006.09.035
- Ferrando, A. A. (2009) The role of NOTCH1 signaling in T-ALL. Hematology Am. Soc. Hematol. Educ. Program, 353-361.
- Galluzzo, P. and Bocchetta, M. (2011) Notch signaling in lung cancer. Expert Rev. Anticancer Ther. 11, 533-540. https://doi.org/10.1586/era.10.158
- Greenwald, I. (2005) LIN-12/Notch signaling in C. elegans. Worm-Book, 1-16.
- Hajnal, A. and Berset, T. (2002) The C. elegans MAPK phosphatase LIP-1 is required for the G(2)/M meiotic arrest of developing oocytes. EMBO J. 21, 4317-4326. https://doi.org/10.1093/emboj/cdf430
- Hara, M. and Han, M. (1995) Ras farnesyltransferase inhibitors suppress the phenotype resulting from an activated ras mutation in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 92, 3333-3337. https://doi.org/10.1073/pnas.92.8.3333
- He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B. and Kinzler, K. W. (1998) Identification of c-MYC as a target of the APC pathway. Science 281, 1509-1512. https://doi.org/10.1126/science.281.5382.1509
- Henderson, S. T., Gao, D., Lambie, E. J. and Kimble, J. (1994) lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120, 2913-2924.
- Holland, J. D., Klaus, A., Garratt, A. N. and Birchmeier, W. (2013) Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254-264. https://doi.org/10.1016/j.ceb.2013.01.004
- Hughes, D. P. (2009) How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat. Res. 152, 479-496. https://doi.org/10.1007/978-1-4419-0284-9_28
- James, R. G., Conrad, W. H. and Moon, R. T. (2008) Beta-cateninindependent Wnt pathways: signals, core proteins, and effectors. Methods Mol. Biol. 468, 131-144. https://doi.org/10.1007/978-1-59745-249-6_10
- Katoh, M. (2008) WNT signaling in stem cell biology and regenerative medicine. Curr. Drug Targets 9, 565-570. https://doi.org/10.2174/138945008784911750
- Kershner, A. M., Shin, H., Hansen, T. J. and Kimble, J. (2014) Discovery of two GLP-1/Notch target genes that account for the role of GLP-1/Notch signaling in stem cell maintenance. Proc. Natl. Acad. Sci. U.S.A. 111, 3739-3744. https://doi.org/10.1073/pnas.1401861111
- Kidd, A. R., 3rd, Miskowski, J. A., Siegfried, K. R., Sawa, H. and Kimble, J. (2005) A beta-catenin identified by functional rather than sequence criteria and its role in Wnt/MAPK signaling. Cell 121, 761-772. https://doi.org/10.1016/j.cell.2005.03.029
- Kimble, J. and Crittenden, S. L. (2005) Germline proliferation and its control. WormBook, 1-14.
- Kimble, J. and Crittenden, S. L. (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 23, 405-433. https://doi.org/10.1146/annurev.cellbio.23.090506.123326
- Lackner, M. R. and Kim, S. K. (1998) Genetic analysis of the Caenorhabditis elegans MAP kinase gene mpk-1. Genetics 150, 103-117.
- Lam, N., Chesney, M. A. and Kimble, J. (2006) Wnt signaling and CEH-22/tinman/Nkx2.5 specify a stem cell niche in C. elegans. Curr. Biol. 16, 287-295. https://doi.org/10.1016/j.cub.2005.12.015
- Lamont, L. B., Crittenden, S. L., Bernstein, D., Wickens, M. and Kimble, J. (2004) FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev. Cell 7, 697-707. https://doi.org/10.1016/j.devcel.2004.09.013
- Lee, M. H., Cha, D. S., Mamillapalli, S. S., Kwon, Y. C. and Koo, H. S. (2014) Transgene-mediated co-suppression of DNA topoisomerase-1 gene in Caenorhabditis elegans. Int. Biochem. Mol. Biol. 5, 11-20.
- Lee, M. H., Hook, B., Lamont, L. B., Wickens, M. and Kimble, J. (2006) LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J. 25, 88-96. https://doi.org/10.1038/sj.emboj.7600901
- Lee, M. H., Hook, B., Pan, G., Kershner, A. M., Merritt, C., Seydoux, G., Thomson, J. A., Wickens, M. and Kimble, J. (2007a) Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet. 3, e233. https://doi.org/10.1371/journal.pgen.0030233
- Lee, M. H., Ohmachi, M., Arur, S., Nayak, S., Francis, R., Church, D., Lambie, E. and Schedl, T. (2007b) Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177, 2039-2062. https://doi.org/10.1534/genetics.107.081356
- Lino, M. M., Merlo, A. and Boulay, J. L. (2010) Notch signaling in glioblastoma: a developmental drug target? BMC Med. 8, 72. https://doi.org/10.1186/1741-7015-8-72
- Liu, J., Sato, C., Cerletti, M. and Wagers, A. (2010) Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr. Top. Dev. Biol. 92, 367-409. https://doi.org/10.1016/S0070-2153(10)92012-7
- Lomenick, B., Hao, R., Jonai, N., Chin, R. M., Aghajan, M., Warburton, S., Wang, J., Wu, R. P., Gomez, F., Loo, J. A., Wohlschlegel, J. A., Vondriska, T. M., Pelletier, J., Herschman, H. R., Clardy, J., Clarke, C. F. and Huang, J. (2009) Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. U.S.A. 106, 21984-21989. https://doi.org/10.1073/pnas.0910040106
- Lomenick, B., Jung, G., Wohlschlegel, J. A. and Huang, J. (2011) Target identification using drug affinity responsive target stability (DARTS). Curr. Protoc. Chem. Biol. 3, 163-180.
- Lopez, A. L., 3rd, Chen, J., Joo, H. J., Drake, M., Shidate, M., Kseib, C. and Arur, S. (2013) DAF-2 and ERK couple nutrient availability to meiotic progression during Caenorhabditis elegans oogenesis. Dev. Cell 27, 227-240. https://doi.org/10.1016/j.devcel.2013.09.008
- Lublin, A. L. and Link, C. D. (2013) Alzheimer's disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for beta-amyloid peptide-induced toxicity. Drug Discov. Today Technol. 10, e115-119. https://doi.org/10.1016/j.ddtec.2012.02.002
- Maine, E. M. and Kimble, J. (1989) Identification of genes that interact with glp-1, a gene required for inductive cell interactions in Caenorhabditis elegans. Development 106, 133-143.
- Marshall, M. (1995) Interactions between Ras and Raf: key regulatory proteins in cellular transformation. Mol. Reprod. Dev. 42, 493-499. https://doi.org/10.1002/mrd.1080420418
- Miyamoto, S. and Rosenberg, D. W. (2011) Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci. 102, 1938-1942. https://doi.org/10.1111/j.1349-7006.2011.02049.x
- Moon, B. S., Jeong, W. J., Park, J., Kim, T. I., Min do, S. and Choi, K. Y. (2014) Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/beta-catenin signaling. J. Natl. Cancer Inst. 106, djt373. https://doi.org/10.1093/jnci/djt373
- Morgan, C. T., Lee, M. H. and Kimble, J. (2010) Chemical reprogramming of Caenorhabditis elegans germ cell fate. Nat. Chem. Biol. 6, 102-104. https://doi.org/10.1038/nchembio.282
- Nadarajan, S., Govindan, J. A., McGovern, M., Hubbard, E. J. and Greenstein, D. (2009) MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development 136, 2223-2234. https://doi.org/10.1242/dev.034603
- Nusse, R., Fuerer, C., Ching, W., Harnish, K., Logan, C., Zeng, A., ten Berge, D. and Kalani, Y. (2008) Wnt signaling and stem cell control. Cold Spring Harb. Symp. Quant. Biol. 73, 59-66. https://doi.org/10.1101/sqb.2008.73.035
- Nykamp, K., Lee, M. H. and Kimble, J. (2008) C. elegans La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis. RNA 14, 1378-1389. https://doi.org/10.1261/rna.1066008
- O'Reilly, L. P., Luke, C. J., Perlmutter, D. H., Silverman, G. A. and Pak, S. C. (2014) C. elegans in high-throughput drug discovery. Adv. Drug Deliv. Rev. 69-70, 247-253. https://doi.org/10.1016/j.addr.2013.12.001
- Okabe, H., Lee, S. H., Phuchareon, J., Albertson, D. G., McCormick, F. and Tetsu, O. (2006) A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS One 1, e128. https://doi.org/10.1371/journal.pone.0000128
- Pennica, D., Swanson, T. A., Welsh, J. W., Roy, M. A., Lawrence, D. A., Lee, J., Brush, J., Taneyhill, L. A., Deuel, B., Lew, M., Watanabe, C., Cohen, R. L., Melhem, M. F., Finley, G. G., Quirke, P., Goddard, A. D., Hillan, K. J., Gurney, A. L., Botstein, D. and Levine, A. J. (1998) WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc. Natl. Acad. Sci. U.S.A. 95, 14717-14722. https://doi.org/10.1073/pnas.95.25.14717
- Pepper, A. S., Killian, D. J. and Hubbard, E. J. (2003a) Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics 163, 115-132.
- Pepper, A. S., Lo, T. W., Killian, D. J., Hall, D. H. and Hubbard, E. J. (2003b) The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev. Biol. 259, 336-350. https://doi.org/10.1016/S0012-1606(03)00203-3
- Petcherski, A. G. and Kimble, J. (2000) LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405, 364-368. https://doi.org/10.1038/35012645
- Phillips, B. T., Kidd, A. R., 3rd, King, R., Hardin, J. and Kimble, J. (2007) Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/ TCF controls asymmetric divisions in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 104, 3231-3236. https://doi.org/10.1073/pnas.0611507104
- Reedijk, M. (2012) Notch signaling and breast cancer. Adv. Exp. Med. Biol. 727, 241-257. https://doi.org/10.1007/978-1-4614-0899-4_18
- Reya, T. and Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature 434, 843-850. https://doi.org/10.1038/nature03319
- Ristorcelli, E. and Lombardo, D. (2010) Targeting Notch signaling in pancreatic cancer. Expert Opin. Ther. Targets 14, 541-552. https://doi.org/10.1517/14728221003769895
- Saxena, N., Lahiri, S. S., Hambarde, S. and Tripathi, R. P. (2008) RAS: target for cancer therapy. Cancer Invest. 26, 948-955. https://doi.org/10.1080/07357900802087275
- Schouest, K. R., Kurasawa, Y., Furuta, T., Hisamoto, N., Matsumoto, K. and Schumacher, J. M. (2009) The germinal center kinase GCK-1 is a negative regulator of MAP kinase activation and apoptosis in the C. elegans germline. PLoS One 4, e7450. https://doi.org/10.1371/journal.pone.0007450
- Schulze, W. X., Deng, L. and Mann, M. (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1, 2005 0008.
- Sellings, L., Pereira, S., Qian, C., Dixon-McDougall, T., Nowak, C., Zhao, B., Tyndale, R. F. and van der Kooy, D. (2013) Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15. Eur. J. Neurosci. 37, 743-756. https://doi.org/10.1111/ejn.12099
- Siegfried, K. R. and Kimble, J. (2002) POP-1 controls axis formation during early gonadogenesis in C. elegans. Development 129, 443-453.
- Smith, M. A., Jr., Zhang, Y., Polli, J. R., Wu, H., Zhang, B., Xiao, P., Farwell, M. A. and Pan, X. (2013) Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: identification of novel gene targets. Reprod. Toxicol. 40, 69-75. https://doi.org/10.1016/j.reprotox.2013.05.007
- Squiban, B. and Kurz, C. L. (2011) C. elegans: an all in one model for antimicrobial drug discovery. Curr. Drug Targets 12, 967-977. https://doi.org/10.2174/138945011795677854
- Sun, W., Gaykalova, D. A., Ochs, M. F., Mambo, E., Arnaoutakis, D., Liu, Y., Loyo, M., Agrawal, N., Howard, J., Li, R., Ahn, S., Fertig, E., Sidransky, D., Houghton, J., Buddavarapu, K., Sanford, T., Choudhary, A., Darden, W., Adai, A., Latham, G., Bishop, J., Sharma, R., Westra, W. H., Hennessey, P., Chung, C. H. and Califano, J. A. (2014) Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 74, 1091-1104. https://doi.org/10.1158/0008-5472.CAN-13-1259
- Sundaram, M. V. (2006) RTK/Ras/MAPK signaling. WormBook, 1-19.
- Taki, F. A., Pan, X. and Zhang, B. (2014) Chronic nicotine exposure systemically alters microRNA expression profiles during postembryonic stages in Caenorhabditis elegans. J. Cell. Physiol. 229, 79-89.
- Tamura, Y., Simizu, S. and Osada, H. (2004) The phosphorylation status and anti-apoptotic activity of Bcl-2 are regulated by ERK and protein phosphatase 2A on the mitochondria. FEBS Lett. 569, 249-255. https://doi.org/10.1016/j.febslet.2004.06.003
- Tetsu, O. and McCormick, F. (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426. https://doi.org/10.1038/18884
- Tilmann, C. and Kimble, J. (2005) Cyclin D regulation of a sexually dimorphic asymmetric cell division. Dev. Cell 9, 489-499. https://doi.org/10.1016/j.devcel.2005.09.004
- Towatari, M., Ciro, M., Ottolenghi, S., Tsuzuki, S. and Enver, T. (2004) Involvement of mitogen-activated protein kinase in the cytokineregulated phosphorylation of transcription factor GATA-1. Hematol. J. 5, 262-272. https://doi.org/10.1038/sj.thj.6200345
- Vaid, S., Ariz, M., Chaturbedi, A., Kumar, G. A. and Subramaniam, K. (2013) PUF-8 negatively regulates RAS/MAPK signalling to promote differentiation of C. elegans germ cells. Development 140, 1645-1654. https://doi.org/10.1242/dev.088013
- Visvader, J. E. and Lindeman, G. J. (2012) Cancer stem cells: current status and evolving complexities. Cell stem cell 10, 717-728. https://doi.org/10.1016/j.stem.2012.05.007
- Wang, D., Huang, B., Zhang, S., Yu, X., Wu, W. and Wang, X. (2013) Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev. 27, 1339-1344. https://doi.org/10.1101/gad.219360.113
- Wend, P., Holland, J. D., Ziebold, U. and Birchmeier, W. (2010) Wnt signaling in stem and cancer stem cells. Semin. Cell Dev. Biol. 21, 855-863. https://doi.org/10.1016/j.semcdb.2010.09.004
- Whelan, J. T., Hollis, S. E., Cha, D. S., Asch, A. S. and Lee, M. H. (2012) Post-transcriptional regulation of the Ras-ERK/MAPK signaling pathway. J. Cell. Physiol. 227, 1235-1241. https://doi.org/10.1002/jcp.22899
- Yoo, A. S., Bais, C. and Greenwald, I. (2004) Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science 303, 663-666. https://doi.org/10.1126/science.1091639
- Zhao, Y., Bjorbaek, C. and Moller, D. E. (1996) Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases. J. Biol. Chem. 271, 29773-29779. https://doi.org/10.1074/jbc.271.47.29773
Cited by
- The Annona muricata leaf ethanol extract affects mobility and reproduction in mutant strain NB327 Caenorhabditis elegans vol.10, 2017, https://doi.org/10.1016/j.bbrep.2017.04.016
- N (4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2′-deoxycytidine as a potential boron delivery agent with respect to glioblastoma vol.95, 2017, https://doi.org/10.1016/j.biopha.2017.08.134
- A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification vol.49, pp.2, 2016, https://doi.org/10.5483/BMBRep.2016.49.2.135
- Three-dimensional cell culture models for anticancer drug screening: Worth the effort? 2017, https://doi.org/10.1002/jcp.26052
- The development of high-content screening (HCS) technology and its importance to drug discovery vol.11, pp.5, 2016, https://doi.org/10.1517/17460441.2016.1165203
- Whole animal HTS of small molecules for antifungal compounds vol.11, pp.2, 2016, https://doi.org/10.1517/17460441.2016.1122591
- Lifespan-extending and stress resistance properties of brazilin from Caesalpinia sappan in Caenorhabditis elegans vol.40, pp.7, 2017, https://doi.org/10.1007/s12272-017-0920-3
- NF-Y in invertebrates vol.1860, pp.5, 2017, https://doi.org/10.1016/j.bbagrm.2016.10.008
- Study of the Effect of Neutral Polysaccharides from Rehmannia glutinosa on Lifespan of Caenorhabditis elegans vol.24, pp.24, 2014, https://doi.org/10.3390/molecules24244592
- Evaluation of anticancer potential of Eleusine indica methanolic leaf extract through Ras- and Wnt-related pathways using transgenic Caenorhabditis elegans strains vol.11, pp.1, 2014, https://doi.org/10.4103/jpnr.jpnr_7_20
- 구증구포 도라지 Ethyl Acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과 vol.51, pp.4, 2014, https://doi.org/10.22889/kjp.2020.51.4.325
- Antiaging Effects of Vicatia thibetica de Boiss Root Extract on Caenorhabditis elegans and Doxorubicin-Induced Premature Aging in Adult Mice vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/9942090
- Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila , Zebrafish, and C. elegans Models vol.22, pp.16, 2014, https://doi.org/10.3390/ijms22168465
- 귀리 Ethyl acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과 vol.52, pp.4, 2014, https://doi.org/10.22889/kjp.2021.52.4.251