DOI QR코드

DOI QR Code

LES를 이용한 직사각형 개수로 난류흐름의 조직구조 분석

Analysis of Coherent Structure of Turbulent Flows in the Rectangular Open-Channel Using LES

  • 반채웅 (연세대학교 대학원 토목환경공학과) ;
  • 최성욱 (연세대학교 공과대학 토목환경공학과)
  • 투고 : 2014.03.31
  • 심사 : 2014.06.30
  • 발행 : 2014.10.01

초록

본 연구에서는 OpenFOAM에서 제공하는 소스코드를 이용하여 매끄러운 하상의 직사각형 개수로 흐름에 대해 수치모의를 수행하였다. 난류 해석을 위해 LES를 수행하였는데, 비등방성 잔여 응력항을 모델링하기 위해서 Germano et al. (1991)이 제시한 Dynamic Subgrid-scale 모형을 이용하였다. 조직구조를 분석하기 위하여 Lu and Willmarth (1973)가 제시한 uw 사분면기법을 이용하여 순간레이놀즈 응력이 레이놀즈 응력에 미치는 영향을 기여율과 시간비로 나누어 분석하였다. LES 모의 결과를 토대로 기존 실험 및 DNS 모의 결과와 비교하고 분석하였다. 매끈한 하상을 가진 개수로 흐름에서 완충층 이후의 구간에서 분출현상이 쓸기현상에 비해 레이놀즈 응력의 양의 생성에 기여하는 바가 크지만, 분출현상에 비해 쓸기현상의 발생빈도가 큰 것으로 확인되었다.

This study presented numerical simulations of smooth-bed flows in the rectangular open-channel using the source code by OpenFOAM. For the analysis of the turbulent flow, Large Eddy Simulations were carried out and the dynamic sub-grid scale model proposed by Germano et al. (1991) is used to model the residual stress term. In order to analyze the coherent structure, the uw quadrant method proposed by Lu and Willmarth (1973) is used and the contribution rate and the fraction time of the instantaneous Reynolds stress are obtained in the Reynolds stress. The results by the present study are analyzed and compared with data from previous laboratory studies and direct numerical simulations. It is found that the contribution rate of the ejection events is larger than that of sweep events over the buffer layer in the open-channel flow over the smooth bed, however, the frequency of the sweep event is higher than that of the ejection events.

키워드

참고문헌

  1. Blackwelder, R. F. and Kaplan, R. E. (1976). "On the wall structure of the turbulent boundary layer." Journal of Fluid Mechanics, Vol. 76, No. 1, pp. 89-112. https://doi.org/10.1017/S0022112076003145
  2. Brodkey, R. S., Wallace, J. M. and Eckelmann, H. (1974). "Some properties of truncated turbulence signals in bounded shear flows." Journal of Fluid Mechanics, Vol. 63, No. 2, pp. 209-224. https://doi.org/10.1017/S0022112074001108
  3. Corino, E. R. and Brodkey, R. S. (1969). "A visual investigation of the wall region in turbulent flow." Journal of Fluid Mechanics, Vol. 37, No. 1, pp. 1-30. https://doi.org/10.1017/S0022112069000395
  4. Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991). "A dynamic subgrid-scale eddy viscosity model." Physics of Fluids A: Fluid Dynamics (1989-1993), Vol. 3, No. 7, pp. 1760-1765. https://doi.org/10.1063/1.857955
  5. Gyr, A. and Schmid, A. (1997). "Turbulent flows over smooth erodible sand beds in flumes." Journal of hydraulic research, Vol. 35, No. 4, pp. 525-544. https://doi.org/10.1080/00221689709498409
  6. Harlow, F. H. and Welch, J. E. (1965). "Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface." Physics of Fluids, 8, p. 2182. https://doi.org/10.1063/1.1761178
  7. Issa, R. I., Gosman, A. D. and Watkins, A. P. (1986). "The computation of compressible and incompressible recirculating flows." Journal of Computational Physics, Vol. 62, No. 1, pp. 62-82.
  8. Kim, H. T., Kline, S. J. and Reynolds, W. C. (1971). "The production of turbulence near a smooth wall in a turbulent boundary layer." Journal of Fluid Mechanics, Vol. 50, No. 1, pp. 133-160. https://doi.org/10.1017/S0022112071002490
  9. Kim, J., Moin, P. and Moser, R. (1987). "Turbulence statistics in fully developed channel flow at low Reynolds number." Journal of Fluid Mechanics, 177, pp. 133-166. https://doi.org/10.1017/S0022112087000892
  10. Kline, S. J., Reynolds, W. C., Schraub, F. A. and Runstadler, P. W. (1967). "The structure of turbulent boundary layers." Journal of Fluid Mechanics, Vol. 30, No. 4, pp. 741-773. https://doi.org/10.1017/S0022112067001740
  11. Lilly, D. K. (1992). "A proposed modification of the Germano subgrid-scale closure method." Physics of Fluids A: Fluid Dynamics (1989-1993), Vol. 4, No. 3, pp. 633-635. https://doi.org/10.1063/1.858280
  12. Lu, S. S. and Willmarth, W. W. (1973). "Measurements of the structure of the Reynolds stress in a turbulent boundary layer." Journal of Fluid Mechanics, Vol. 60, No. 3, pp. 481-511. https://doi.org/10.1017/S0022112073000315
  13. Nakagawa, H. and Nezu, I. (1977). "Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows." Journal of Fluid Mechanics, Vol. 80, No. 1, pp. 99-128. https://doi.org/10.1017/S0022112077001554
  14. Nezu, I. and Nakagawa, H. (1993). Turbulence in open-channel flows, Monograph, Balkema, Rotterdam, The Netherlands.
  15. Nezu, I. and Sanjou, M. (2008). "Turburence structure and coherent motion in vegetated canopy open-channel flows." Journal of Hydro-environment Research, Vol. 2, No. 2, pp. 62-90. https://doi.org/10.1016/j.jher.2008.05.003
  16. Nino, Y. and Garcia, M. H. (1996). "Experiments on particleturbulence interactions in the near-wall region of an open channel flow: Implications for sediment transport." Journal of Fluid Mechanics, 326, pp. 285-319. https://doi.org/10.1017/S0022112096008324
  17. Okamoto, T. A. and Nezu, I. (2010). "Large eddy simulation of 3-D flow structure and mass transport in open-channel flows with submerged vegetations." Journal of Hydro-environment Research, Vol. 4, No. 3, pp. 185-197. https://doi.org/10.1016/j.jher.2010.04.015
  18. Raupach, M. R. and Thom, A. S. (1981). "Turbulence in and above plant canopies." Annual Review of Fluid Mechanics, Vol. 13, No. 1, pp. 97-129. https://doi.org/10.1146/annurev.fl.13.010181.000525
  19. Smagorinsky, J. (1963). "General circulation experiments with the primitive equations: I. the Basic Experiment." Monthly Weather Review, Vol. 91, No. 3, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  20. Tominaga, A., Nezu, I., Ezaki, K.. and Nakagawa, H. (1989). "Threedimensional turbulent structure in straight open channel flows." Journal of Hydraulic Research, Vol. 27, No. 1, pp. 149-173. https://doi.org/10.1080/00221688909499249
  21. Wallace, J. M., Eckelmann, H. and Brodkey, R. S. (1972). "The wall region in turbulent shear flow." Journal of Fluid Mechanics, Vol. 54, No. 1, pp. 39-48. https://doi.org/10.1017/S0022112072000515