DOI QR코드

DOI QR Code

Effects of Dodam-tang on Cerebral Ischemic Damage of Hyperlipidemic Rats

도담탕(導痰湯)이 고지혈증 흰쥐의 뇌허혈 손상에 미치는 영향

  • Kim, Kyung-Hun (Department of Anatomy-Pointology, Gachon University) ;
  • Kim, Do-Hoon (Oriental Medical Classics & History, Gachon University) ;
  • Kim, Youn-Sub (Department of Anatomy-Pointology, Gachon University)
  • 김경훈 (가천대학교 한의과대학 해부경혈학교실) ;
  • 김도훈 (가천대학교 한의과대학 원전의사학교실) ;
  • 김연섭 (가천대학교 한의과대학 해부경혈학교실)
  • Received : 2014.08.06
  • Accepted : 2014.09.16
  • Published : 2014.09.30

Abstract

Objectives : Dodam-tang has been reported to have a control effect against the hyperlipidemia and thrombosis. Based upon these previous reports, this study investigates the effects of Dodam-tang on the cerebral ischemic damage of the hyperlipidemic rats. Methods : Hyperlipidemia was induced by the beef tallow 30% diet for 14 days on Sprague-Dawley rats. Ischemic damage was induced by the middle cerebral artery occlusion (MCAO) for 2 hours with the intraluminal thread method. Then water extract of Dodam-tang was administered daily for 5 days. The effect of Dodam-tang was evaluated with the serum lipids, infarct volume and edema percentage, and immunohistochemical expressions of iNOS, MMP-9, and GFAP in the brain tissue. Results : The obtained results were as follows; Dodam-tang reduced significantly the infarct size in a TTC-stained 5th brain section of the hyperlipidemic MCAO rats. Dodam-tang suppressed the infarct volume of the hyperlipidemic MCAO rats, but not significant statistically. Dodam-tang suppressed the edema percentage of the hyperlipidemic MCAO rats significantly in the brain tissue. Dodam-tang suppressed significantly the iNOS expression in the cerebral penumbra and caudate putamen of the hyperlipidemic MCAO rats. Dodam-tang suppressed significantly the MMP-9 expression in the cerebral penumbra of the hyperlipidemic MCAO rats. Dodam-tang suppressed significantly the GFAP-expressed atrocytes in the cerebral penumbra of the hyperlipidemic MCAO rats. Conclusions : These results suggest that Dodam-tang suppresses the brain edema formation through the suppression of the iNOS, MMP-9 and GFAP, but the neuroprotective effect against the cerebral infarct are not distinct.

Keywords

References

  1. Ng YS, Stein J, Ning M, Black-Schaffer RM. Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke. 2007 ; 38(8) : 2309-14. https://doi.org/10.1161/STROKEAHA.106.475483
  2. Alberts MJ, Ovbiagele B. Current strategies for ischemic stroke prevention: role of multimodal combination therapies. J Neurol. 2007 ; 254(10) : 1414-26. https://doi.org/10.1007/s00415-007-0569-9
  3. Eom YH. Eomssijesaeng-bang. Beijing : Renminweisheng-chubanshe. 1980 : 79.
  4. Yun GY. Dongui-imsangbangjehak. Seoul : Myeongbo-chulpansa. 1985 : 99.
  5. Wang A. Uibangjipae. Seoul : Seongbo-sa. 1983 : 314-6.
  6. Sin WT, Heo JE, Kim TH, Hong SH, Kwon OS, Kim KT, Hong SH. Clinical effect of Dodam-tang on hyperlipidemia. J Kor Orien Intern Med. 2007 ; 10(1) : 113-8.
  7. Kim YD, Mun BS, Park YS, Kim SG. Effects of Dodamtang on the Hyperlipidemia and Intravascular Coagulation Induced Rabbits. J Trad Kor Med. 1994 ; 4(1) : 85-128.
  8. Kim TS, An GS. Effect of Dangkwisoosan and Dodamtang on the Intravascular Coagulation Induced by Endotoxin in Rats. Kor J Orien Pathol. 1988 ; 3(1) : 91-8.
  9. Cho HK, Im SM, An JJ, Choe Y, Kim YJ, Yu HR, Park YC, Seol IC, Hwang CW. Effect of Dodamtang (DDT) on Brain damage and Hypertension. J Kor Orien Internal Med. 2001 ; 22(4) : 503-12.
  10. Pinto A, Tuttolomondo A, Di Raimondo D, Fernandez P, Licata G. Cerebrovascular risk factors and clinical classification of strokes. Semin Vasc Med. 2004 ; 4(3) : 287-303. https://doi.org/10.1055/s-2004-861497
  11. Futterman LG, Lemberg L. Stroke risk, cholesterol and statins. Am J Crit Care. 1999 ; 8(6) : 416-9.
  12. Sin GJ, Park SS. A Study on the level of Serum Lipids in Stroke. J Korean Inst Orient Med Inform. 1995 ; 1(1) : 37-55.
  13. Kim YS. Integrated clinical approach to stroke. Seoul : Seowon-dang. 1997 : 335-48.
  14. Chae IS. Hanbang-imsanghak. Seoul : Daeseongmunhwasa. 1987 : 145-50.
  15. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. stroke. 1989 ; 20(1) : 84-91. https://doi.org/10.1161/01.STR.20.1.84
  16. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blod Flow Metab. 1990 ; 10(2) : 290-3. https://doi.org/10.1038/jcbfm.1990.47
  17. Simons LA, McCallum J, Friedlander Y, Simons J. Risk factors for ischemic stroke: Dubbo Study of the elderly. Stroke. 1998 ; 29(7) : 1341-6. https://doi.org/10.1161/01.STR.29.7.1341
  18. Lee DS, Sin GJ, Cho GH, Kim YS, Bae HS, Lee KS. Experimental study on the effects of Chungyeuldodamtang upon hypertension and hyperlipidemia. J Kor Orien Intern Med. 1992 ; 12(2) : 16-25.
  19. Park WH. A Study on The Effects of The Pungwidodamtang on High Lipid Diethyperlipidemia Rats. Kor J Orien Pathol. 1996 ; 10(2) : 103-11.
  20. Park WH, Choe DY, Mun JJ. A Study of the influence of both of Shunqidaotantang and Huayutnag on thrombosis, contysion-hyperemia, and hyperlipidemia. J Dongguk Resear Instit Orien Med. 1993 ; 2(1) : 19-54.
  21. Hawkins BT, Davis TP. The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacol Rev. 2005 ; 57(2) : 173-85. https://doi.org/10.1124/pr.57.2.4
  22. Abbott NJ, Ronnback L, Hansson E. Astrocyteendothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006 ; 7(1) : 41-53. https://doi.org/10.1038/nrn1824
  23. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006 ; 1(3) : 223-36. https://doi.org/10.1007/s11481-006-9025-3
  24. Thiel VE, Audus KL. Nitric oxide and blood-brain barrier integrity. Antioxid Redox Signal. 2001 ; 3 : 273-8. https://doi.org/10.1089/152308601300185223
  25. Yong VW, Kerkoski CA, Forsyth PA, Bell R, Edwards DR. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 1998 ; 21(2): 75-80. https://doi.org/10.1016/S0166-2236(97)01169-7
  26. Luo CX, Zhu XJ, Zhang AX, Wang W, Yang XM, Liu SH, Han X, Sun J, Zhang SG, Lu Y, Zhu DY. Blockade of L-type voltagegated $Ca^{2+}$ channel inhibits ischemia-induced neurogenesis by downregulating iNOS expression in adult mouse. J Neurochem. 2005 ; 94(4) : 1077-86. https://doi.org/10.1111/j.1471-4159.2005.03262.x
  27. Zhu DY, Deng Q, Yao HH, Wang DC, Deng Y, Liu GQ. Inducible nitric oxide synthase expression in the ischemic core andpenumbra after transient focal cerebral ischemia in mice. Life Sci. 2002 ; 71(17) : 1985-96. https://doi.org/10.1016/S0024-3205(02)01970-7
  28. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 ; 94(6) : 2493-503. https://doi.org/10.1172/JCI117619
  29. Winkler F, Koedel U, Kastenbauer S, Pfister HW. Differential expression of nitric oxide synthases in bacterial meningitis: role of the inducible isoform for blood-ibrain barrier breakdown. J Infect Dis. 2001 ; 183(12) : 1749-59. https://doi.org/10.1086/320730
  30. Tan KH, Harrington S, Purcell WM, Hurst RD. Peroxynitrite mediates nitric oxide-induced blood- kbrain barrier damage. Neurochem Res. 2004 ; 29(3) : 579-87. https://doi.org/10.1023/B:NERE.0000014828.32200.bd
  31. Khan M, Sekhon B, Giri S, Jatana M, Gilg AG, Ayasolla K, Elango C, Singh I. S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood Flow Metab. 2005 ; 25(2) : 177-92. https://doi.org/10.1038/sj.jcbfm.9600012
  32. Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. FASEB J. 1990 ; 4(6) : 1577-90. https://doi.org/10.1096/fasebj.4.6.2180767
  33. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LLJ, del Zoppo GJ. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke. 2004 ; 35(4) : 998-1004. https://doi.org/10.1161/01.STR.0000119383.76447.05
  34. Rosenberg GA, Navratil M, Barone F, Feuerstein G. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab. 1996 ; 16(3) : 360-6. https://doi.org/10.1097/00004647-199605000-00002
  35. Liu KJ, Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med. 2005 ; 39(1) : 71-80. https://doi.org/10.1016/j.freeradbiomed.2005.03.033
  36. Gasche Y, Copin J-C, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2001 ; 21(12) : 1393-400. https://doi.org/10.1097/00004647-200112000-00003
  37. Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-rain barrier. Trends Neurosci. 2001 ; 24(12) : 719-25. https://doi.org/10.1016/S0166-2236(00)02004-X
  38. Pekny M, Pekna M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol. 2004 ; 204(4) : 428-37. https://doi.org/10.1002/path.1645