DOI QR코드

DOI QR Code

Estimation of Human Lower-Extremity Muscle Force Under Uncertainty While Rising from a Chair

의자에서 일어서는 동작 시 불확실성을 고려한 인체 하지부 근력 해석

  • Received : 2014.03.14
  • Accepted : 2014.08.07
  • Published : 2014.10.01

Abstract

Biomechanical models are often used to predict muscle and joint forces in the human body. For estimation of muscle forces, the body and muscle properties have to be known. However, these properties are difficult to measure and differ from person to person. Therefore, it is necessary to predict the change in muscle forces depending on the body and muscle properties. The objective of the present study is to develop a numerical procedure for estimating the muscle forces in the human lower extremity under uncertainty of body and muscle properties during rising motion from a seated position. The human lower extremity is idealized as a multibody system in which eight Hill-type muscle force models are employed. Each model has four degrees of freedom and is constrained in the sagittal plane. The eight muscle forces are determined by minimizing the metabolic energy consumption during the rising motion. Uncertainty analysis is performed using a first-order reliability method. The one-standard-deviation range of agonistic muscle forces is calculated to be about 150-300 N.

인체의 근골격계 모델을 이용해 근력을 예측하기 위해서는 인체 및 근육의 물성치를 알아야 한다. 하지만 이러한 물성치들은 측정하기도 어렵고 사람마다 편차도 크다. 따라서 이러한 물성치들의 변화에 따라 근력이 얼마나 달라지는지 예측할 필요가 있다. 본 연구의 목적은 인체 및 근육 물성치의 불확실성을 고려하여 의자에서 일어서는 동작 시 인체 하지부의 근력을 예측하는 절차를 정립하는 것이다. 인체 하지부는 8 개의 Hill-type 근육-건 모델이 포함되어 있는 다물체 시스템으로 모델링 하였다. 이 모델은 시상면(sagittal plane)에서 평면운동을 하는 4 자유도 시스템이다. 각 근력은 일어서는 운동을 하는 동안 근육이 소모한 에너지가 최소화 되도록 근력이 결정된다는 가정 하에 최적화 방법을 이용하여 구하였다. 또한 인체 물성치가 불확실성을 가질 때 근력의 표준편차를 First Order Reliability Method 를 이용해 구하였다. 그 결과 주동근 근력의 표준편차는 150~300N 로 상당히 크게 계산되는 것을 알 수 있었다.

Keywords

References

  1. Hill, A. V., 1938, "The Heat of Shortening and Dynamic Constants of Muscle," Proc. of the Royal Society of London. Series B, Biological Sciences, Vol. 126, No. 843, pp. 136-195. https://doi.org/10.1098/rspb.1938.0050
  2. Huxley, A. F., 1958, "Muscle Structure and Theories of Contraction," Progress in Biophysical Chemistry, Vol. 7, pp. 225-318.
  3. Brand, R. A., Crowninshield, R. D., Wittstock, C. E., Pedersen, D. R., Clark, C. R. and van Krieken, F. M., 1982, "A Model of Lower Extremity Muscular Anatomy," Journal of Biomechanical Engineering, Vol. 104, No. 4, pp. 304-310. https://doi.org/10.1115/1.3138363
  4. Leva, P. De, 1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," Journal of Biomechanics, Vol. 29, No. 9, pp. 1223-1230. https://doi.org/10.1016/0021-9290(95)00178-6
  5. Pandy, M. G., Zajac, F. E., Sim, E. and Levine, W. S., 1990, "An Optimal Control Model for Maximum-Height Human Jumping," Journal of Biomechanics, Vol. 23, No. 12, pp. 1185-1198. https://doi.org/10.1016/0021-9290(90)90376-E
  6. Raasch, C. C., Zajac, F. E., Ma, B. and Levine W. S., 1997, "Muscle Coordination of Maximum-Speed Pedaling," Journal of Biomechanics, Vol. 30, No. 6, pp. 595-602. https://doi.org/10.1016/S0021-9290(96)00188-1
  7. Anderson, F. C. and Pandy, M. G., 2001, "Dynamic Optimization of Human Walking," Journal of Biomechanical Engineering, Vol. 123, No. 5, pp. 381-390. https://doi.org/10.1115/1.1392310
  8. He, J., Levine, W. S. and Loeb, G. E., 1991, "Feedback Gains for Correcting Small Perturbations to Standing Posture," IEEE Transactions on Automatic Control, Vol. 36 No. 3, pp. 322-332. https://doi.org/10.1109/9.73565
  9. Buchanan, T. S., Lloyd, D. G., Manal, K. and Besier, T. F., 2004, "Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements from Measurements of Neural Command," Journal of Applied Biomechanics, Vol. 20, No. 4, pp. 367-395.
  10. Forsythe, G. E. and Malcolm, B. F., 1977, Computer Methods for Mathematical Computation, Prentice-Hall, Englewood Cliffs.
  11. Menegaldo, L. L., Fleury, A. T. and Weber, H. I., 2004, "Moment Arms and musculotendon lengths Estimation for a Three-dimensional Lower-limb model," Journal of Biomechanics, Vol. 37, No. 9, pp. 1447-1453. https://doi.org/10.1016/j.jbiomech.2003.12.017
  12. Menegaldo, L. L., Fleury, A. T. and Weber, H. I., 2003, "Biomechanical Modeling and Optimal Control of Human Posture," Journal of Biomechanics, Vol. 36, No. 11, pp. 1701-1712. https://doi.org/10.1016/S0021-9290(03)00170-2
  13. Hoy, M. G., Zajac, F. E. and Gordon, M. E., 1990, "A Musculoskeletal Model of the Human Lower Extremity: the Effect of Muscle, Tendon, and Moment Arm on the Moment-Angle Relationship of Musculotendon Actuators at the Hip, Knee, and Ankle," Journal of Biomechanics, Vol. 23, No. 2, pp. 157-169. https://doi.org/10.1016/0021-9290(90)90349-8
  14. Nuzik, S., Lamb, R., VanSant, A. and Hirt, S., 1986, "Sit-to-Stand Movement Pattern: a Kinematic Study," Physical Therapy, Vol. 66, No. 11, pp. 1708-1713.
  15. Umberger, B. R., Gerritsen, K. G. M. and Martin, P. E., 2003, "A Model of Human Muscle Energy Expenditure," Computer Methods in Biomechanics and Biomedical Engineering, Vol. 6, No. 2, pp. 99-111. https://doi.org/10.1080/1025584031000091678
  16. Durkin, J. L. and Dowling, J. J., 2003, "Analysis of Body Segment Parameter Differences Between Four Human Populations and the Estimation Errors of Four Popular Mathematical Models," Journal of Biomechanical Engineering, Vol. 125, No. 4, pp. 515-522. https://doi.org/10.1115/1.1590359
  17. Khemlani, M. M., Carr, J. H. and Crosbie, W. J., 1998, "Muscle Synergies and Joint Linkages in Sit-to-Stand Under Two Initial Foot Positions," Clinical Biomechanics, Vol. 14, No. 4, pp. 236-246.