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Abstract—The accuracy of training-based activity recognition depends on the training 
procedure and the extent to which the training dataset comprehensively represents the 
activity and its varieties. Additionally, training incurs substantial cost and effort in the 
process of collecting training data. To address these limitations, we have developed a 
training-free activity recognition approach based on a fuzzy logic algorithm that utilizes 
a generic activity model and an associated activity semantic knowledge. The approach 
is validated through experimentation with real activity datasets. Results show that the 
fuzzy logic based algorithms exhibit comparable or better accuracy than other training-
based approaches. 
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1. INTRODUCTION 

 Activity recognition can significantly empower many human centric applications in a variety 
of domains, such as healthcare, elder care, and other quality of life concerns [1,2]. For instance, 
in telehealth systems, caregivers are empowered by activity recognition instead of relying on 
and sifting through large datasets for analysis–a process hat is highly error prone. Human 
activity recognition research is surveyed in [3-5]. The applicability of activity recognition in real 
world applications is limited however by the low recognition accuracy—which is often 
unacceptable. For example, taking medications regularly is very important for patients. A 
healthcare system that does not recognize ‘taking a medicine’ activity accurately may produce 
incorrect recommendations. Such errors may lead to inadequate dosage or over-dosage. 
Significant activity recognition research is focused on finding algorithms with improved 
accuracy [3-5]. However, accuracy of current state of the art activity recognition technology 
remains inadequate leaving room for significant improvements before activity recognition can 
go mainstream in application developments.  

 
1.1 Challenges of Human Activity Recognition 

Human activity recognition is challenging because of the following characteristics of human 
activities. 

 
1) Ambiguity 
Recognizing human activities can produce ambiguous results because of several reasons. First, 

※ This research was supported by a United States National Institutes of Health Grant (No. 5R21DA024294). 
Manuscript received July 09, 2014; accepted August 01, 2014. 
Corresponding Author: Sumi Helal (helal@cise.ufl.edu) 
*  Mobile and Pervasive Computing Lab., Department of Computer and Information Science and Engineering, 

University of Florida, Gainesville, FL, USA ({helal, ejkim}@cise.ufl.edu) 

ISSN 1976-913X (Print) 
ISSN 2092-805X (Electronic)

Copyright ⓒ 2014 KIPS



 
Training-Free Fuzzy Logic Based Human Activity Recognition 

 

336 

sometimes, people initiate an activity but do not complete it. These partially performed activities 
result in recognition ambiguity. For example, people may ingest a small amount of food but not 
complete their meal. Second when an activity initiates, there may not be enough information to 
determine the activity with a high confidence level. It takes a finite time interval to determine 
the performed activity.  

 
2) Variety 
Due to the variety of human activities, it is difficult to recognize all activities. An activity may 

be performed in many different ways. For instance, even though ‘MakingHotTea’ is a simple 
activity, there are several ways to make a hot tea. Some people boil water using a stove. Other 
people may use microwave.  

 
1.2 Limitations of Existing Training Based Activity Recognition Technologies 

1) Accuracy 
Many activity recognition techniques are based on supervised machine learning algorithms 

that require training. In such technologies, activity recognition accuracy is highly dependent 
upon the training data and training process. Due to the variety of human activities, it is almost 
impossible to collect a comprehensive dataset for training a system to achieve high accuracy. 
Therefore, it is important to find a new activity recognition approach that can show consistent 
accuracy even without training. 

 
2) Programmability 
In activity recognition, programmability is the capability to support activity recognition 

system design change according to new application requirements or activity recognition 
environment changes. Many training based algorithms do not offer adequate programmability 
because new training is required whenever there is a change in activity recognition system. 
These repeated training is prohibitive due to cost and resource constraints. 

 
1.3 Motivation 

To address the issues of accuracy and programmability, we have developed a new activity 
recognition approach that does not require training. Our ultimate goal is to develop a system 
whose activity recognition performance is comparable to the activity recognition performance of 
humans. Hence, before developing an activity recognition approach, we compared machine 
based activity recognition methods with activity recognition methods used by humans. We 
found three major differences, which are enumerated below. 

First, humans have very accurate activity model. The source of this high accuracy is their 
knowledge. To illustrate, when people think about an activity, they are able to estimate when 
and where it can be performed, how to perform it, and why it should be performed. Also, the 
activity model of a human keeps evolving as the human gains more knowledge. Therefore, in 
addition to building an activity model with activity knowledge, the activity model should be 
amenable to refinement and expansion. 

Second, humans utilize activity semantic knowledge to determine a performed activity 
through logical inferences. Activity semantic knowledge is the knowledge that is not directly 
related to performing a specific activity, yet it provides for significant information that helps 
determine if an activity actually happened. For example, if cooking and sleeping activities of a 
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person are recognized at the same time, it is implied that at least one of the recognition results is 
not correct because people cannot cook while sleeping. People utilize this semantic knowledge 
to recognize an activity accurately. Hence, if an activity recognition system utilizes activity 
semantic knowledge, it can enhance accuracy. 

Third, people can recognize ambiguous activities well and describe the activity precisely 
using a variety of linguistic words. In other words, when an activity is ambiguously performed, 
people are able to describe the activity linguistically. They do not always make a clear 
recognition decision. For instance, when a user takes one spoonful of food, the user probably did 
not have a complete meal. In this case, people describe the patient’s activity as “the patient had a 
small amount of food” or “the patient had one spoonful only.” The linguistic description is more 
accurate than a recognition system that generates a binary output, i.e., “the patient had food” or 
“the patient didn’t have food.” Activity recognition system should be able to use linguistic terms 
to avoid recognition errors of ambiguously performed activities.  

To develop an activity recognition system that can support all requirements for mimicking 
humans’ activity recognition as described above, we developed a generic activity modeling 
framework and a set of activity semantics that it can utilize. Based on our new modeling 
framework—a hierarchical framework for modeling compositional relationship between an 
activity and components of the activity, we developed a fuzzy logic based activity recognition 
algorithm. Our approach realizes three key advantages. 

 
1) No training required 
Our approach doesn’t require training. An existing activity recognition system may need to 

evolve because of several reasons such as changes in the target activities or sensor replacement 
due to advances in technology. Whenever, there is a change, training based activity recognition 
systems need a new set of training data and the activity recognition system must be retrained to 
reflect the change. Because our activity recognition system always cooperate with the activity 
models and activity semantics through direct querying instead of training, activity model change 
is carried over to the activity recognition system almost immediately without incurring too much 
additional training cost. 

 
2) Model-recognizer synergy 
Second, fuzzy logic is synergistic with our activity semantics because some semantics have 

characteristic of fuzziness. To illustrate, some activities, such as ‘watching TV,’ can be 
performed concurrently with many other activities. ‘Sleeping’ cannot usually be performed 
concurrently with other activities. And some activities, such as ‘eating’ or ‘talking’ are partially 
concurrent. This difference of activity concurrency can be represented using a fuzzy value. 
Additionally, fuzzy logic has fuzzy operations and inference capability that can handle this 
semantic knowledge. For example, if ‘sleeping’ and ‘cooking,’ which can never be concurrent, 
are recognized at the same time, fuzzy inference can be used to flag recognition inaccuracy.  

 
3) Higher precision 
Third, fuzzy logic based activity recognition approach can represent a recognized activity 

more precisely using linguistic output. Because linguistics is one of the main features of fuzzy 
logic theory, fuzzy logic can represent this linguistic terms easily via fuzzy membership function. 
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The rest of this paper is organized as follows. In the next sections, we review several related 
works. We then present our new activity modeling technique based on the generic activity 
framework (GAF) and associated activity semantics. We then describe our proposed fuzzy logic 
based activity recognition algorithm along with its implementation. Finally, experiments and 
results for validation of our approach are presented. 

 
 

2. LITERATURE REVIEW 

 
2.1 Review of Activity Framework–Activity Theory 

L. S. Vygotsk who was a psychologist during 1920s and 1930s found activity theory. Later, A. 
N. Leontjev and A. R. Lurija further developed the activity theory [3,6-8]. Activity theory was 
first applied to human-computer interaction (HCI) in the early 1980s [7]. Recently, it is applied 
implicitly or explicitly in a lot of activity recognition model. The activity theory has four 
components such as subject, tool, objective, and outcome as shown in Fig. 1. 

 

Fig. 1. Structure of activity theory. 

 
A subject is a person who performs an activity. An objective is a plan or common idea that 

can be shared for manipulation and transformation by the participants of the activity. Tool is an 
artifact a subject uses to fulfill an objective. Outcome is another artifact or activity that are result 
of the activity. Transforming the objective into an outcome motivates the performing of an 
activity. For instance, having one’s own house is an objective and the purchased house is the 
outcome. Transforming an object into an outcome requires various tools including documents, 
equipment, devices, etc. These relationships among components are presented with lines in Fig. 1.  

Gray line between subject and objective represents a mediated relationship whereas bold line 
indicates direct relationship between components. Subject and tool have a direct relationship 
because a subject uses a tool in person. A tool mediates the relationship between an objective 
and subject, which is represented in gray line, because subjects achieve their objective using 
tools. Even though activity theory is well known and is often used in activity recognition 
research, it has some limitations. First, tool and object are not distinguish in activity theory even 
though it is necessary to distinguish them because the same artifact item may be used as tool in 
an activity, but object in other activities. In this case, the item has different meaning for each 
activity. For example, when a dish is used as a tool for cooking, it implies it contains food. On 
the other hand, if it is an object for washing dish activity, it means that it is an empty dish. 
Second, it is difficult to represent a temporal relationship between activities in activity theory 
due to the fact that activity theory focuses on the relationship between components such as 
subject, activity objective, tool and outcome rather than the relationship between activities. 
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2.2 Review of Probabilistic Activity Recognition Algorithm 

In probabilistic activity recognition, it is assumed that human activities are continuously 
performed and each activity is a sequential composition of activity components, such as motions, 
operations or actions according to a temporal sequence [5]. According to this idea, several 
probabilistic models including hidden Markov model (HMM) or the conditional random field 
(CRF) model have been used to build an activity model because they are suitable for handling 
temporal sensor data.  

 
2.2.1 HMM 
HMM is a probabilistic function of Markov chains based on the first order Markov 

assumption of transition [9]. The basic idea of Markov chain of order m is that the future state 
depends on the past m numbers of states. Therefore, for HMM that is based on the first order 
Markov assumption, the future state depends only on the current state, not on past states [9]. 
Also HMM is a model that is used for generating hidden states from observable data. HMM 
determines the hidden state sequence (y1, y2, ..., yt) that corresponds to the observed sequence 
(x1, x2, ..., xt) [5]. In activity recognition, hidden state is human activities and therefore, HMM 
recognizes activities from both sensor observation and recognized activities in previous time 
according to the first order Markov chain. Moreover, HMM is also a generative and directed 
graph model [5,9]. Generative model means that observation data is randomly generated. In 
other words, it should enumerate all possible random cases in the model. Directed graph is used 
to capture orders between states. Therefore, a generative and directed graph model in activity 
recognition implies it should find all possible sequences of sensor observations of an activity.  

However, many activities may have non-deterministic natures in practice, where some steps 
of the activities may be performed in any order. In practice, because many activities are 
concurrent or interleaved with other activities, HMM has difficulty in representing multiple 
interacting activities (concurrent or interleaved) [5,9]. Also HMM is incapable of capturing 
long-range or transitive dependencies of the observations due to its very strict independence 
assumptions on the observations. Therefore, enumerating all possible observation cases and 
orders is difficult for a practical activity recognition system. Furthermore, missing an 
observation or an order will cause the HMM to produce errors in the model. 

 
2.2.2 CRF 
CRF is a more flexible alternative to the HMM, which relaxes the strict assumption of HMM 

[4,5,10,11]. In other words, CRF solves the issues of HMM by neglecting the order constraint. 
Like HMM, CRF is also used to determine a hidden state transition from randomly generated 
observation sequences. However, CRF is a discriminative model, which does not generate all 
possible cases from the joint distribution of x and y. Therefore, CRF does not include arbitrarily 
complicated features of the observed variables into the model. Also, CRF is an undirected 
acyclic graph, flexibly capturing any relation between an observation variable and a hidden state 
[4,5]. Because CRF does not consider order, it considers only relationships, such as state feature 
function (relationship between observations over a period of time and activities) and transition 
feature function (relationship between past activities and future activities). Even though CRF 
removes order constraint from an activity model, CRF could outperform HMM [4]. 
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3. GAF AND ASSOCIATED ACTIVITY SEMANTIC KNOWLEDGE 

 
3.1 GAF 

We developed a GAF that has a hierarchical structure in which each layer consists of activity 
components. In total, there are eight components in the GAF. We chose the eight components 
according to 5W1H framework and we also found the eight is the most influential. In addition to 
the framework, we also add context because it is important to understand activities. The detailed 
description of the eight components is given below: 

● Subject - is the actor of an activity.  
● Time - when an activity is performed consists of start time and end time.  
● Location - is the place where an activity is performed.  
● Motive - is the reason why a subject performs a specific activity. Motive is the objective in 

activity theory as shown in Fig. 1. However, detecting motive is challenging. To determine 
motive, some artificial intelligent reasoning technique may be required. 

● Tool - is an artifact that a subject uses to perform an activity. Tool provides essential 
information to classify activities. For example, a spoon or a fork is a tool for eating or 
cooking. 

● Object - can also be any artifact like tool. However, object is the target of an activity whereas 
a subject uses a tool. Distinction between tool and object is important for accurate activity 
recognition because some artifacts are both tool and object depending on an activity. 

● Context - is information, which is used to determine the situation where an activity is performed.  
 

 
Fig. 2. Hierarchical structure of a generic activity framework. 

 
Fig. 2 shows a composition diagram of the GAF. Rectangles are layers and ellipses represent 

components. The detailed description for each layer is given below: 
● Sensors are installed in the pervasive space (e.g., a smart home) to collect event information 

of the space. Based on the source of sensor data, sensor is classified into four types: motion, 
tool, object, and context sensor.  

● Operation is a composition of tool and motion. The user operates tools with specific motion. 
For example, if computer is a tool, some hand or finger motion will be performed for typing a 
keyboard. 

● Action is determined by combination of operation and object. For example, if a user types a 
command to open a file, typing on the keyboard is an operation and the file is an object and 
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this combination is open file action.  
● Activity is a collection of actions. Activity may involve multiple actions according to 

procedural steps. 
 

3.2 Activity Semantics-Enriched GAF 

Even though a GAF describes the composition hierarchy of activity components, it does not 
contain detailed activity semantic knowledge, such as role of an activity component, or 
relationships with other components. The activity semantics should be represented in an activity 
model because they are important for classifying an activity. For example, eating is composed of 
three actions, such as picking food, chewing food, and swallowing food. In this case, if only 
picking food is detected, then it is not clear whether eating is really performed or not because we 
are not sure the person completes the activity through chewing and swallowing the food or not. 
Activity semantics reduce these kinds of ambiguity. We introduce five activity semantics: 
dominance semantics, mutuality semantics, order semantics, activity effect, and activity life 
cycle (ALC). 

 
1) Dominance semantics 
In the hierarchical composition structure of an activity model, parent component may have 

several children components. Even though they are children components of same parent, the 
contribution of children may be different. Some children components are dominantly essential 
component of the activity whereas some are not. According to the dominance, we classify them 
as key or optional components.  

● Key component is a mandatory component for identifying an activity. If an activity has 
multiple key components, all of them are required to agree with the activity. Otherwise, the 
activity is not considered performed.  

● Optional component is not a key component of the activity. It is possible to omit an optional 
component because it does not always affect activity classification. 
 
2) Mutuality semantics 
This semantic knowledge is used to determine whether multiple activities can be concurrently 

performed or not. 
● Concurrent components can be performed with other components together.  
● Exclusive component cannot be performed simultaneously with another components. For 

example, sleeping is an exclusive activity because people cannot usually perform other 
activities when they sleep. 

● Ordinary components are partially exclusive and concurrent. For example, when people sit, 
they cannot run at the same time. In this case, they are exclusive. But they can sit and sing a 
song concurrently. Hence, ‘sit’ is both partially exclusive and concurrent activity.  
 
3) Order semantics 
Some activities like an instruction should follow a procedural sequence. However, many 

activities have flexible order or do not have any order. Therefore, the role of order among 
activity components should be considered depending on the activity. 
● Strong order requires that activity components (e.g., actions) should be always performed in a 
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specific order. For instance, waking-up definitely comes after sleeping. 
● Weak order means that for many activities, their action components are performed according 

to a flexible order.  
● Skip chain order has a temporal gap between two activities when an activity is interrupted by 

other activities. To illustrate, eating is usually performed immediately after cooking, but 
sometimes we can do other activities between them.  
 
4) Effect semantics 
Effect is caused by an activity. For example, the eating activity has effects, such as 

‘increasing glucose level’ or ‘increasing body temperature.’ Activity effect is used to verify if 
the recognized activity is really performed.  

 
5) ALC 
A human activity has a finite life cycle, which spans from its initiation to its termination. An 

activity is usually initiated in response to a requirement or a stimulus. The termination of an 
activity is usually close to or coincides with fulfilling a certain goal.  

 

 
Fig. 3. Activity life cycle stages. 

 
Tracking ALC can improve activity recognition accuracy. In Fig. 3, ALC is composed of four 

stages: ‘starting,’ ‘growing,’ ‘declining,’ and ‘finishing.’ When an activity starts, there may not 
be sufficient sensor data for making decisive conclusions. For example, if it is observed that a 
person holds a cup, it is not clear why the person holds the cup even though it is obvious the 
person may be performing an activity, such as ‘drinking,’ ‘washing cups,’ etc. In this ambiguous 
case, recognition decision is postponed until more sensor data is collected. 

 

 
Fig. 4. Notations of activity semantics. 

 
Fig. 4 shows the modeling notations of each semantic. Dominance semantics and mutuality 

semantics are represented as nodes whereas order semantics are represented as edges. Fig. 5 
shows an example of an activity model designed based on the GAF and its activity semantics. 
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Fig. 5. An example of activity model. 

 
 

4. ACTIVITY SEMANTIC FUZZY LOGIC THEORY FOR HUMAN ACTIVITY 
RECOGNITION 

An activity semantic fuzzy logic is defined by combining activity semantics with fuzzy logic 
[12]. There are three extensions that result from this combination: extension of fuzzy set, 
extension of fuzzy operators, and extension of fuzzy rules, as shown in Fig. 6.  

 

 
Fig. 6. Extension of fuzzy logic to semantic fuzzy logic. 

 
4.1 Extension of Fuzzy Set to Activity Semantic Fuzzy Set 

In fuzzy set F, x is an input element of a real set X. An element of semantics set S is denoted 
by s. A fuzzy membership value of x on fuzzy membership function uA is denoted as uA(x) or 
u(x). A fuzzy set F is extended to an activity semantic fuzzy set Fʹ  that contains activity 
semantics (Table 1).  
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Table 1. Fuzzy set and semantic fuzzy set 

Set Set expression 

Fuzzy set    Xxxu x,= A F  

Semantic fuzzy set F' = x,  u
A

x  ,  s   x  X, s  S   

 
Fuzzy set F (input value, fuzzy membership value) is extended to Semantic fuzzy set ʹF  

(input value, fuzzy membership value, activity semantic) that includes an additional ‘semantic’ 
variable. For example, F = {(300, 0.3), (500, 0.5), … , (10, 0.01)} is extended to ʹF  = {(300, 
0.3, Optional), (500, 0.5, Concurrent), … , (10, 0.01, Key)}. 

 
4.2 Extension of Fuzzy Operator to Activity Semantic Fuzzy Set Operator 

Fuzzy set operator is composed of a set of T-norm and S-norm fuzzy operators, which are 
based on union and intersection operator. We added more fuzzy set operators that can compute 
fuzzy values of activity semantics. 

 
1) Fuzzy dominance operator (operator @) 
This operator computes activity dominance semantics. Fuzzy dominance operator is defined 

as “the values of every key component should be greater than 0 for any recognized activity”. 
According to the defined operation, fuzzy dominance operator is defined in Table 2. In the table, 
x and y are operands. Their fuzzy values are u(x) and u(y). Their dominance semantic is either 
‘Key’ or ‘Optional.’ We assign a fuzzy value to dominance semantics. In other words, we assign 
1 to ‘Key’ and 0 to ‘Optional’ according to their dominance degree.  

 
Table 2. Fuzzy operation for dominance semantics  

x y Operation result (x@y) 

Key  Key 
(max(Key, Key), min(u(x), u(y)) 

=(Key, min(u(x), u(y)) 

Key Optional (Key, u(x)) 

Optional  Optional (Optional, 1) 

 
If either x or y is a key component of an activity, their dominance operation result is also a 

key. The fuzzy value of dominance operation is minimum fuzzy value of all key operands. If 
any key component has fuzzy value 0, then dominance operation will return 0.  

 
2) Fuzzy mutuality operator (operator #) 
The fuzzy mutuality operator checks concurrency or mutuality semantics between two input 

data. The value of concurrency is between 0 and 1, depending on concurrency. We assign 1 to 
‘Concurrent’ and 0 to ‘Exclusive’ semantic. For ‘Ordinary,’ a fuzzy value between 0 and 1 is 
assigned (e.g., 0.5). Table 3 shows mutuality operation. If either x or y is exclusive, mutuality 
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operation returns the operand that has a greater fuzzy value. Otherwise, it returns both operands. 
 

Table 3. Fuzzy operation for mutuality semantics 

x y Operation results (x#y) 

Concurrent Concurrent {(1, x), (1, y)} 

Concurrent (= 1) Ordinary (= 0.5) {(1, x), (0.5, y)} 

Concurrent Exclusive (= 0) 
{(1, x)} if (u(x) > u(y)) 

{(0, y)} otherwise 

Exclusive Exclusive 
{(0, x)} if (u(x) > u(y)) 

{(0, y)} otherwise 

Exclusive Ordinary 
{(0, x)} if (u(x) > u(y)) 

{(0.5, y)} otherwise 

Ordinary Ordinary {(0.5, x). (0.5, y)} 

 
4.3 Extension of Fuzzy Rule to Semantic Fuzzy Rule 

Fuzzy rule is based on classical implication and inference rules [13]. The difference between 
classical reasoning rule [14] and fuzzy rule [13] is that x and y values denote fuzzy values in 
fuzzy rules whereas they represent Boolean value in classical reasoning rules. In fuzzy logic, 
these rules are used for approximate reasoning; the resulting output is linguistic words. For 
example, if an implication rule (if x then y, xy) is combined with a linguistic word ‘strong’ 
then the fuzzy rule is “if x is strong then y is strong.” Then, one of inference rules is “if y is not 
strong, then x is not strong” because inference rules are derived from implication rule. These 
fuzzy implication and inference rules are extended for activity recognition; they are applied for 
checking activity semantics like dominance operator and mutuality operator. In activity semantic 
fuzzy logic, the fuzzy rule is “if an activity is clearly performed then the semantics of the 
activity are clear.”  

 
Table 4. Fuzzy rule for activity effect semantics  

Rule Rule expression 

Implication 
(Rule1)  

u A   0  Effect
A,i   0  ,Effect

A,i   Effect
A

 

Inference 
(Rule2) 

Rule1   Effect
A,i   0,Effect

A,i   Effect
A 

 u A   0 
 

 
Table 4 shows an example of activity semantic fuzzy rule. Even though this example shows 

the fuzzy rule of effect semantics, other semantics can be also presented. The effect rule checks 
the semantic “if an activity is truly performed, some effects of the activity should be detected.” 
A is an activity.” Effect(A, i) is the ith effect of the activity. EffectA is a set of all effects of A.  
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5. APPLYING ACTIVITY SEMANTIC FUZZY LOGIC TO ACTIVITY RECOGNITION 

In this section, we explain how to apply training-free fuzzy logic to activity recognition 
(activity recognition). Our activity recognition algorithm utilizes activity model that is of a 
hierarchical structure as illustrated in Fig. 5. During the initial phase of recognizing an activity, 
only low-level sensor data is available. From these sensor data, activity recognition algorithm 
should recognize performed activities by computing the fuzzy value from low layer to top layer 
using activity semantic fuzzy logic techniques and activity model.  

 
5.1 Step 1: Fuzzy Membership Function 

Fuzzy membership function is used at two points in the activity recognition process. First, it is 
used to convert sensor values to fuzzy membership values. When a sensor event is triggered, the 
sensor value is not initially a fuzzy value. Different sensors have a different output range. For 
example, a light sensor has sensor value from -10 to 10 whereas motion sensor has a value from 
0 to 360. Fuzzy membership function converts these sensor values to fuzzy membership values 
between 0 and 1. There are popular fuzzy membership functions such as triangular or 
trapezoidal fuzzy membership functions [13]. Second, fuzzy membership function is used to 
combine the fuzzy value of an activity with linguistic terms. After computing the fuzzy value of 
activities, activities in top layer of activity model have a fuzzy value. This fuzzy value is a 
numeric value and it should be combined with a linguistic term because it is easier for people to 
understand. For example, if the fuzzy value of an activity is 0.5, the linguistic term will be 
“activity is somewhat performed” according to an example of decision index in Fig. 7.  

 

 
Fig. 7. Indices to decide fuzzy membership of activities. 

 
5.2 Step 2: Computing Component Weights Based on Activity Model 

Even though an activity is composed of several components in Figs. 5 and 8, their contributions 
to the activity vary. Some components are very crucial to determine a performed activity whereas 
some are not. The weight value of a component determines how strongly it impacts the activity. 
If the weight value of a component is high, the component has powerful influence. Many 
supervised machine-learning algorithms compute a weight value via training. They collect data 
and train the algorithm with the data. Training is a reasonable approach for certain applications 
if sufficient training data can be collected in a cost effective manner. However, it is difficult to 
apply training based algorithms to human activity recognition because human activities are very 
complex and it is difficult to collect sufficient data with the constraints of time and resources. In 
our approach, weights are computed based on the activity model. The weight (wi) of an ith child 
component (ci) is determined by contribution and evidential power of the child component in Eq. 
(1). Because these contribution and evidential power of the child component are computed using 
the information in an activity model, this approach does not require training. 
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wi  contributioni  evidential _ poweri  
 
The contribution (contributioni) of a child (ci) indicates how much this child component 

contributes to its parent component. For instance, in Fig. 8, p1 has three children e1, e2, e3, and 
therefore, the contribution value of each child is 0.33. 

 

 
Fig. 8. Contribution and evidential_power relationship between children components and parents. 

 
In Eq. (2), assuming that every child component contributes equally to their parent, n is the 

number of children components of a parent.  
 

                
contribution

i
 1

n
  

 
where, n is the number of incident edges to p, e(cp, p).
 
Evidential power (evidential_poweri) of a child (ci) represents how much evidential information 

a child component has in order to determine a parent component. To illustrate, if a sensor is only 
used to detect a specific activity, the evidential power of the sensor data is very high. On the 
other hand, if a sensor is used to detect several activities, the evidential power of the sensor data 
will be low. In Eq. (3), m is the number of parents of a child component. For example, in Fig. 8, 
e3 has two parents, p1 and p2, and therefore, the evidential_poweri of e3 is 0.5. 

 

               
evidential _ power

i
 1

m
  

 
where, m is the of outgoing edges from c, e(c  p, c). 
 
In the weight of a group, if multiple components are triggered at the same time, they are 

considered to form a group. When there is a group of children components, the weight may be 
computed as a group because the fact that they occur at the same time is important information 
to determine the performed activity. For example, in Fig. 9, if two components b and c are 
detected, it is highly likely that A2 was performed. When b and c are detected at different 
instants of time, the evidential power is 0.5 for both of them according to Eq. (3). If b and c are 
in a group, the evidential power of {b, c} on A2 is 1 and weight of each of them is 0.5. 
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Fig. 9. Weights of group components. (a) The weight of b and c when they happened in different 
times. (b) The weight when b and c are detected at the same time. 

 
5.3 Step 3: The Computation of Fuzzy Value of Activities 

The fuzzy value (u(p)) of a parent component p is computed using the bounded algebraic sum 
of T-norm operation. The T-norm operation is the algebraic product of weight (wi) and the fuzzy 
value (u(ci)) of every child component ci as shown in Eq. (4). 

 

                          
u(p)  min 1,  w

i
 u c

i  
i1

n











 

 
where, u(ci) is a fuzzy value of a child component and n is the number of children. 
 

5.4 Step 4: Enforcing Semantics Using Activity Semantic Fuzzy Operators or 
Rules 

After computing fuzzy value of activities, there may be activities whose fuzzy value is 
positive. Among them, some activities are truly performed. However, some activities may have 
a positive value even though they are not performed. Such positive values may be attributed to 
recognition error and uncertainty sources. To eliminate false recognition, activity semantics are 
evaluated. If an activity does not satisfy pre-established semantics, it is eliminated from the 
recognition process. 

  
5.5 Step 5: Evaluation of ALC  

Activity takes time from start to finish. Sometimes, an activity may be paused and restarted at 
a later time. When an activity is recognized, the life cycle of the activity is evaluated. If the 
activity is an on-going activity, all historical records since the activity is performed in ALC heap. 
When an activity is completed, then the activity is permanently recorded and it is removed from 
the heap. These techniques are implemented in the activity recognition system described in the 
next section. 

 
 

6. FUZZY LOGIC BASED TRAINING-FREE ACTIVITY RECOGNITION SYSTEM 
IMPLEMENTATION 

All aforementioned techniques, such as activity model framework, activity semantics, 
extended fuzzy logic for activity recognition, and activity model based weight computation are 
integrated in the fuzzy logic based activity recognition system in Fig. 10.   
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Fig. 10. The architecture of training free activity recognition system and activity recognition flow. 

 
6.1 Activity Recognition Engine 

Activity recognition engine performs fuzzy operation and processes fuzzy rules to determine 
performed activities using sensor data. Activity recognition engine is composed of three 
subsystems: activity recognition graph (activity recognition graph), semantics evaluator, and 
ALC heap. These subsystems interact together as shown in Fig. 11.  

 

 
Fig. 11. Activity recognition flow of activity recognition graph, semantics evaluator, and activity life 

cycle heap. 
 
 Activity recognition graph is a hierarchical graph which is a subset of the activity model. 

When sensor event is detected, activity recognition system searches activity model and finds all 
related activity components and builds an activity recognition graph. After building a graph, it 
computes the weights for every edge and performs fuzzy operation from the bottom layers to the 
activity layer. After activity recognition graph computes the fuzzy values of activities, it sends 
all activities to ALC heap to evaluate the ALC of recognized activities as shown in Fig. 11. An 
activity is performed over a finite duration from activity initiation to activity completion. To 
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determine whether an activity is completed, on-going, or paused, it is necessary to track its life 
cycle states. 

 
 

7. VALIDATION OF FUZZY LOGIC BASED ACTIVITY RECOGNITION ALGORITHM 

An experimental study has been conducted with the main objective of seeking answers to the 
following two questions.  

● Does the fuzzy logic based, training-free activity recognition algorithm show better 
performance [15,16] than multi-layer neural network based activity recognition algorithm 
that utilizes training data? 

● How much does activity semantic knowledge contributes towards increasing recognition 
accuracy? 
To answer these two questions, we developed four activity recognition systems and compared 

the accuracy of four activity recognition algorithms—FL, FL+S, MLNNK, and MLNNK+S. 
Fuzzy logic (FL) recognizes activities using fuzzy logic only. Fuzzy logic + semantics (FL+S) 
recognizes both fuzzy logic and activity semantics. MLNNK recognizes activities based on 
multi-layer neural network. MLNNK+S recognizes activities using both multi-layer neural 
network and activity semantics.  

 
7.1 Experiment Setup 

Activity dataset for this validation is drawn from the domain of activities of daily living for 
older adults [17,18], and was collected at the Gator Tech Smart House [19-21]. Among several 
collected activity datasets, ‘making hot tea’ activity datasets that were generated by three 
residents for four days were used for this experiment. For collecting ‘MakingHotTea,’ bluetooth 
enabled RFID devices, Android smartphones, and several sensors were used. The bluetooth 
RFID reader shown in Table 5 was well suited for collecting the activity data set, its light-
weight (75 g) ensures that it is wearable and it has a range of 50 cm [22], which is sufficient for 
the experiment. In total, ‘MakingHotTea’ was performed 17 times as shown in Table 6. Some of 
them are only partially performed to evaluate how well activity recognition algorithms deal with 
incomplete activities.  

 
Table 5. Sensors and devices used to collect activity data 

Sensor and device Location 
Android phone Portable 

RFID reader (bluetooth enabled) [23] Wearable device 
RFID tags Kettle, bottles, cups, etc. 

Touch sensor Stove switch 
Temperature, humidity sensors [22] Kitchen 

 
Table 6. Target activities and the number of cases 

Activity ID Activity Total # of cases 
1 MakingHotTea (partially performed)   11 
2 MakingHotTea (completed) 6 
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7.2 Comparison and Analysis 

According to the accuracy measurement expressions in Eqs. (5) and (6), class accuracy and 
time slice accuracy are computed. Class accuracy represents how accurately a target activity is 
recognized. Time slice accuracy represents the number of time slices that are correctly 
recognized out of all time slices in which the activity is performed. To compute accuracy, we 
measure the following four cases.   

● True positive (TP): the number of activities that are performed and recognized. 
● True negative (TN): the number of activities that are neither performed and nor recognized. 
● False positive (FP): the number of activities that are recognized by the system, even though 

they are not really being performed.  
● False negative (FN): the number of activities that are performed, but not recognized. 

 

                  
Accuracy

Activity
 TPTN

TPTN FP FN
 

                 
Accuracy

Timeslice


TP
i1

in
N

 

 
where, N is the total number of time slices.
 
Table 7 and Fig. 12 compare the accuracy of activity classes for activity recognition algorithms. 

FL shows better accuracy for both completed and partially completed activities. When activity 
semantics are used, both FL+S and MLNNK+S show high accuracy. For all algorithms, partially 
performed activities show lower accuracy than completed activity.  

 
Table 7. Accuracy comparison of algorithms  

 Activity ID TP TN FP FN Acc. 
FL 1 2 6 0 9 0.47 

2 5 9 2 1 0.82 
FL+S 1 4 6 0 7 0.59 

2 5 10 1 1 0.88 
MLNNK 1 0 6 0 11 0.35 

2 5 8 3 1 0.76 
MLNNK+S 1 4 6 0 7 0.59 

2 5 10 1 1 0.88 

TP=true positive, TN=true negative, FP=false positive, FN=false negative, Acc.=accuracy, FL=fuzzy 
logic, S=semantics, MLNNK=multi-layer neural network. 

 

 
Fig. 12. The comparison of activity recognition accuracy. FL=fuzzy logic, S=semantics, MLNNK= 

multi-layer neural network.  
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Table 8 and Fig. 13 compare the time slice accuracy of activity recognition algorithms. FL 
and FL+S show better accuracy than MLNNK or MLNNK+S. Even though FL shows low 
activity recognition accuracy in Fig. 12, it shows high time slice accuracy. It means FL 
algorithm and FL+S algorithm recognize activities with higher confidence than MLNNK or 
MLNNK+S. 

 
Table 8. Time slice accuracy 

Dataset 
ID 

Total # of time 
slices 

FL FL+S MLNNK MLNNK+S 

1 13 13 13 3 13 
2 9 7 7 2 7 
3 2 2 2 0 2 
4 6 3 6 1 4 
5 3 3 3 1 3 
6 7 6 7 2 6 
7 4 0 0 0 0 
8 3 0 0 0 0 
9 4 0 4 0 0 
10 3 3 3 0 0 
11 1 0 0 0 0 
12 3 0 0 0 0 
13 6 4 6 1 4 
14 18 16 16 2 16 
15 2 2 2 0 2 
16 5 5 5 1 5 
17 2 0 0 0 0 

Total 91 64 74 13 63 
Acc. 1.00 0.70 0.81 0.14 0.68 

FL=fuzzy logic, S=semantics, MLNNK=multi-layer neural network, Acc.=accuracy. 

 

 
Fig. 13. The comparison of time slice accuracy. FL=fuzzy logic, MLNNK=multi-layer neural network. 

 
 

8. CONCLUSION 

We introduce a new approach for recognizing activities based on a generic model of human 
activities that exploits semantic knowledge of a particular domain. For instance Activities of 
daily living at home for elderly is one such a domain which we use in our illustrations and 
validation in this paper. Once a body of semantic knowledge is available, any activity in its 
associated domain can be defined and recognized without any required training. Even if the 
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sensor set changes due to technology improvement or the introduction of new sensors, no 
training will be required. Our approach utilizes specific fuzzy logic operators and a fuzzy logic 
algorithm that we found to be very suitable to 1) utilizing the semantic knowledge of the domain 
and 2) tolerating the inherent and often complex uncertainties in activity performance. We 
conducted validation to show that the ‘no-training’ accomplishment does not come at a reduced 
accuracy expense. Our work clearly shows that accuracy of our approach is at least similar to or 
better than approaches that require training. 
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