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COEFFICIENT DISCS AND GENERALIZED

CENTRAL FUNCTIONS FOR THE CLASS OF

CONCAVE SCHLICHT FUNCTIONS

Bappaditya Bhowmik and Karl-Joachim Wirths

Abstract. We consider functions that map the open unit disc confor-
mally onto the complement of an unbounded convex set with opening
angle πα, α ∈ (1, 2], at infinity. We derive the exact interval for the vari-
ability of the real Taylor coefficients of these functions and we prove that
the corresponding complex Taylor coefficients of such functions are con-
tained in certain discs lying in the right half plane. In addition, we also
determine generalized central functions for the aforesaid class of functions.

1. Introduction

Let A be the class of functions f holomorphic in the unit disc D = {z : |z| <
1}, where they have a Taylor expansion at the origin of the following form

(1.1) f(z) = z +

∞
∑

n=2

an(f)z
n, z ∈ D.

We define Co(α), α ∈ (1, 2], as the family of functions f ∈ A such that they
satisfy the following conditions:

(i) the functions f ∈ Co(α) are univalent in D,
(ii) the set C \ f(D) is convex and the opening angle of f(D) at infinity

does not exceed πα, α ∈ (1, 2],
(iii) f(1) = ∞.

We call such functions concave univalent functions with opening angle πα at

infinity and we refer to the articles [1, 2, 4, 5] for a detailed discussion on func-
tions in this class. We now recall the following characterization for functions
in Co(α) (compare [2, Theorem 2]):
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Theorem A. Let f ∈ A and α ∈ (1, 2]. A function f belongs to the family

Co(α) if and only if there exists a function ϕ : D → D, holomorphic in D such

that

(1.2)
d

dz

(

log
(

f ′(z)(1− z)α+1
))

= −
(α− 1)ϕ(z)

1− zϕ(z)
, z ∈ D.

The present article is dedicated to establish the sets of variability of the
functionals an(f), f ∈ Co(α) for n ≥ 2. The exact sets of variability of the
coefficients a2(f) and a3(f) are given by (compare [2])

{a2(f) : f ∈ Co(α)} =

{

w :

∣

∣

∣

∣

w −
α+ 1

2

∣

∣

∣

∣

≤
α− 1

2

}

and

{a3(f) : f ∈ Co(α)} =
{

w = (α+1)(α+2)
6 + α2−1

3

(

ζ + α−2
2(α+1)ζ

2
)

: ζ ∈ D

}

,

respectively. The boundary points of both the above sets are attained by the
second and third Taylor coefficients of the functions

(1.3) fθ(z) =
1

α(1− eiθ)

((

1− eiθz

1− z

)α

− 1

)

, θ ∈ (0, 2π)

and

f0(z) =
z

1− z
.

The above results enable us to make the following:

Conjecture 1. Let α ∈ (1, 2], and

f ′
θ(z) = 1 +

∞
∑

n=1

dn(θ)z
n,

where fθ is given by (1.3). We conjecture that for n ≥ 2 the set of variability

of the functional an(f), f ∈ Co(α), is the closed simply connected set bounded

by the simple closed curve

[0, 2π] ∋ θ → dn−1(θ)/n.

In the moment, we are only able to prove that for n ≥ 1 the set {dn(θ) :
θ ∈ [0, 2π]} is a simple closed curve. To achieve this aim, we calculate dn(θ)
explicitly using the Cauchy product formula and we get
(1.4)

dn(θ) =

∏n

j=1(α+ j)

n!
− (α − 1)

n
∑

k=1

(

∏k

j=2(j − α)

k!

)(

∏n−k

j=1 (α+ j)

(n− k)!

)

eiθk.

Let

Bn(ζ) =

∞
∑

k=1

Bn,kζ
k,
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where

Bn,k =

(

∏k
j=2(j − α)

k!

)(

∏n−k
j=1 (α+ j)

(n− k)!

)

, 1 ≤ k ≤ n,

and Bn,k = 0 for k > n. We want to prove that Bn delivers a conformal map of
the unit disc. The proof of this assertion is an application of the Wolff-Noshiro
Lemma which states that Bn is univalent on the unit disc if Re (B′

n(ζ)) > 0
for |ζ| < 1. The inequality Re (B′

n(ζ)) > 0 for |ζ| < 1 can be proved using the
second assertion in [7, p. 107] due to Rogosinski, where one has to consider
the case An = 2 for all positive integers n assuring that Re(B′

n(ζ)) > 1
2Bn,1

if the sequence {kBn,k}k≥1 is a non-negative monotonically decreasing convex
sequence, i.e.,

kBn,k ≥ (k + 1)Bn,k+1,

and

kBn,k − 2(k + 1)Bn,k+1 + (k + 2)Bn,k+2 ≥ 0

for k ≥ 1. Elementary calculations show the validity of these assertions.
Now, the fact that Co(α) ⊆ Co(2) for α ∈ (1, 2] implies that the set of

variability of an(f), f ∈ Co(α), is contained in the set of variability of an(f),
f ∈ Co(2). Indeed, from [1], we recall that the following set is the exact set of
variability for an(f), f ∈ Co(2):

(1.5) {an(f) : f ∈ Co(2)} =

{

w :

∣

∣

∣

∣

w −
n+ 1

2

∣

∣

∣

∣

≤
n− 1

2

}

.

Recently in [4, Corollary 2.2], the first author of the present article proved that

(1.6) max{|an(f)| : f ∈ Co(α)} =
f
(n)
π (0)

n!
,

where fπ is given by (1.3) with θ = π. We now state the following definitions
as we need these for our further discussion.

Definition 1.1 (Tδ-neighborhood, compare [10]). Let f ∈ A have the expan-
sion (1.1). The Tδ-neighborhood of f is defined by the following set of functions

TNδ(f) =

{

g(z) = z +

∞
∑

k=2

bnz
n ∈ A |

∞
∑

k=2

Tk|ak − bk| ≤ δ

}

,

where δ ≥ 0 and T = {Tk}k≥2 is a sequence of non-negative real numbers.

The notion of a neighborhood of univalent functions was first introduced by
St. Ruscheweyh in [8]. The Tδ-neighborhood of f will be called δ-neighborhood
of f whenever Tk = k, k = 2, 3, . . .. We also refer to the article [11] for some
more interesting results on the δ-neighborhood of the class of Caratheodory
functions. In [6, 2.1], we introduced the following definition of a central func-

tion.
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Definition 1.2 (Central function). Let F be a class of functions holomorphic
in a neighborhood of the origin having a Taylor series expansion of the form
(1.1). A function

fc(z) = z +

∞
∑

n=2

bnz
n,

is called a central function for the class F with respect to {kn}n≥2 if and only if
fc ∈ F and there exist constants kn, n ≥ 2, such that the regions of variability
for the functionals an, n ≥ 2, on the class F are given by the inequalities

|an − bn| ≤ kn.

Next, we introduce the notion of a generalized central function.

Definition 1.3 (Generalized central function). A function

fgc(z) = z +
∞
∑

n=2

bnz
n,

is called a generalized central function for the class F with respect to {kn}n≥2

if and only if fgc ∈ F and the constants kn, n ≥ 2, are such that for each n ≥ 2,
the set of variability for the functional an on the class F is contained in the set

|an − bn| ≤ kn.

We comment here that the generalized central function is not unique and we
aim to take the sequence {kn} as small as possible.

In [3], Bednarz and Sokól interpreted the inequalities in (1.5) as the existence
of a central function fc for Co(2), where

fc(z) =
1

2

(

1

(1− z)2
− 1

)

=
∞
∑

n=1

(

n+ 1

2

)

zn, z ∈ D,

such that a certain Tδ-neighborhood of fc contains Co(2). The question whether
a similar approach is possible to compute the radius δ of the Tδ-neighborhood
for a generalized central function of the class Co(α), is the reason for the re-
search presented here. In order to fulfill our aim, we first establish the exact
sets of variability of the real Taylor coefficients for functions in Co(α). Next,
we show that the corresponding complex Taylor coefficients for functions in
Co(α) are contained in certain discs lying in the right half plane. Lastly, as an
application of this result, we obtain generalized central functions for the class
Co(α), α ∈ (1, 2], such that a certain Tδ-neighborhood of this function contains
the class Co(α). We present all these results in the following Section.

2. Results

We start this section with the following result:
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Theorem 1. Let n ≥ 2 and α ∈ (1, 2]. Then

{an(f) : f ∈ Co(α)} ∩ R =

[

1,
f
(n)
π (0)

n!

]

,

where fπ is given by (1.3) with θ = π.

Proof. In view of (1.5) and (1.6) we only have to show that any point of the
interval stated in the Theorem is the n-th Taylor coefficient of a function f ∈
Co(α). The choice ϕ(z) = c, c ∈ [−1, 1], in (1.2) of Theorem 1 indicates that
the functions

gc(z) =
1

α(1 − c)

((

1− cz

1− z

)α

− 1

)

, c ∈ [−1, 1),

and

g1(z) =
z

1− z
, (ϕ(z) = c = 1)

are members of the family Co(α). We note that the n-th Taylor coefficients

of the functions g1(= f0) and g−1(= fπ) are 1 and f
(n)
π (0)/n!, respectively.

Hence, the n-th Taylor coefficients of these functions gc, c ∈ [−1, 1], fill the
interval stated in the theorem. This completes the proof. �

Next, in order to describe the set of variability {an(f) : f ∈ Co(α)}, we are
only able to prove the following partial result.

Theorem 2. Let n ≥ 2 and α ∈ (1, 2]. Then the set {an(f) : f ∈ Co(α)} is

contained in the closed disc Dcn,rn with center

cn =

∏n−1
j=1 (α+ j)

n!
,

and the radius

rn =
α− 1

n

n−1
∑

k=1

∏k

j=2(j − α)

k!

∏n−k−1
j=1 (α+ j)

(n− k − 1)!
= cn − 1.

There exists no smaller disc with the same center than this one containing the

above set of variability.

Proof. The sharpness assertion follows directly from formula (1.4) and the fact
that dn(0) = n+ 1. This in particular yields dn−1(0) = n, which is equivalent
to rn = cn − 1. For the proof of the asserted inclusion relation, we use the
following representation formula for functions in Co(α) proved in [2] which
states that for any f ∈ Co(α) there exists a function ω : D → D holomorphic

in D such that

f ′(z) =
(1− zω(z))α−1

(1 − z)α+1
.
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For the calculation of the Taylor expansion of the right side of this representa-
tion formula we use the following expansion

1

(1 − z)α+1
=

∞
∑

n=0

(∏n

k=1(α+ k)

n!

)

zn, z ∈ D,

and let

ω(z)r =

∞
∑

k=0

tk,rz
k.

Now using the Cauchy product formula, we get

(n+1)an+1(f)=

∏n

j=1(α+j)

n!
−(α−1)

n
∑

r=1

∏r

j=2(j−α)

r!

n−r
∑

k=0

∏n−r−k

j=1 (α+ j)

(n− r − k)!
tk,r .

Hence our assertion is equivalent to
∣

∣

∣

∣

∣

n
∑

r=1

∏r

j=2(j − α)

r!

n−r
∑

k=0

∏n−r−k

j=1 (α + j)

(n− r − k)!
tk,r

∣

∣

∣

∣

∣

≤

n
∑

r=1

∏r

j=2(j − α)

r!

∏n−r

j=1 (α+ j)

(n− r)!
.

By use of the triangle inequality we see that it is sufficient to prove the inequal-
ities

∣

∣

∣

∣

∣

n−r
∑

k=0

∏n−r−k
j=1 (α+ j)

(n− r − k)!
tk,r

∣

∣

∣

∣

∣

≤

∏n−r
j=1 (α+ j)

(n− r)!
.

Since |ω(z)| ≤ 1 implies |ω(z)r| ≤ 1, we may restrict ourselves to the consider-
ation of

ω(z) =

∞
∑

k=0

tkz
k,

and prove

(2.1)

∣

∣

∣

∣

∣

N
∑

k=0

∏N−k
j=1 (α + j)

(N − k)!
tk

∣

∣

∣

∣

∣

≤

∏N
j=1(α+ j)

N !
.

To this end, we first consider the polynomial

Q(z) =

N
∑

k=0

(

∏N−k

j=1 (α+ j)
∏N

j=1(α+ j)

N !

(N − k)!

)

zk =:

N
∑

k=0

qkz
k.

We know that the Hadamard product or convolution f1 ∗ f2 of two functions

fi(z) =

∞
∑

k=0

ak(fi)z
k, i = 1, 2,

is defined as

(f1 ∗ f2)(z) =

∞
∑

k=0

ak(f1)ak(f2)z
k.
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Hence

(Q ∗ ω)(1) =

N
∑

k=0

(

∏N−k

j=1 (α+ j)
∏N

j=1(α+ j)

N !

(N − k)!

)

tk.

Therefore, the asserted inequality is equivalent to

|(Q ∗ ω)(1)| ≤ 1.

Since |ω(z)| ≤ 1 for z ∈ D, it is sufficient to prove that Q is a bound preserving
polynomial. According to the Theorems 2.6 and 3.2 in [9] this is the case if

(2.2) Re (Q(z)) >
1

2
, z ∈ D.

Due to the result of Rogosinski in [7, p. 107], which we already used in the
introduction, the inequality (2.2) is true if we can show that the sequence
(q̃k)k≥0 defined by

q̃k =

{

qk for 0 ≤ k ≤ N,
0 for k ≥ N + 1,

is a monotonically decreasing convex sequence, i.e.,

q̃k − ˜qk+1 ≥ 0

and

q̃k − 2 ˜qk+1 + ˜qk+2 ≥ 0

for k ∈ N ∪ {0}. The proof of the validity of these inequalities in our case
is a simple exercise in elementary calculations. This completes the proof of
Theorem 2. �

Now, an application of the above theorem yields the following interesting
result.

Theorem 3. A generalized central function for the class Co(α), α ∈ (1, 2],
with respect to {kn}n≥2 where

kn =

∏n−1
k=1 (α+ k)

n!
− 1

is given by

(2.3) fgcα(z) =
1

α

(

1

(1− z)α
− 1

)

, z ∈ D.

Moreover, for any positive sequence {σn}n≥2 such that

δ =

∞
∑

n=2

σn < ∞,
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the class Co(α) is contained in the Tδ-neighborhood of fgcα whenever the se-

quence {Tn}n≥2 is given by

Tn = σn

(

∏n−1
k=1 (α+ k)

n!
− 1

)−1

.

Proof. We note that the following series expansion is possible for the function
fgcα(z) at the origin

fgcα(z) =
1

α

(

1

(1− z)α
− 1

)

= z +

∞
∑

n=2

(

∏n−1
k=1 (α + k)

n!

)

zn.

Now since fgcα ∈ Co(α), the proof of the first part of the theorem is over
from Theorem 2. To prove the remaining part of the theorem, we calculate the
radius δ for the Tδ-neighborhood as follows:

∞
∑

n=2

Tn

(

∏n−1
k=1 (α+ k)

n!
− 1

)

=
∞
∑

n=2

σn = δ.
�

Remark. We note here that the {kn}n≥2 in Theorem 3 are minimal concerning
our generalized central function according to Theorem 2.

Remark. Bednarz and Sokól computed (see f.i. [3, Theorem 4]) the radius δ
for the Tδ-neighborhood of

fc(z) =
1

2

(

1

(1− z)2
− 1

)

with respect to the sequence {Tn}n≥2 where

Tn =
1

n2(n− 1)
as

1

2

(

π2

6
− 1

)

.

We now take a special choice of σn = 1
2n2 and compute the radius δ for the

Tδ-neighborhood of fgcα(z) = 1
α

(

1
(1−z)α − 1

)

with respect to the sequence

{Tn}n≥2 where

Tn =
1

2n2

(

∏n−1
k=1 (α+ k)

n!
− 1

)−1

.

A straightforward computation gives

δ =

∞
∑

n=2

Tn

(

∏n−1
k=1 (α+ k)

n!
− 1

)

=

∞
∑

n=2

1

2n2
=

1

2

(

π2

6
− 1

)

.
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We observe here that the computed radius δ for the Tδ-neighborhood of fgcα ,
α ∈ (1, 2], is same as the result of Bednarz and Sokól but in our case with
bigger Tn except in the case α = 2 where their result is the same as ours.

Acknowledgement. The authors would like to thank St. Ruscheweyh for
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valuable comments.
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