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A CYCLIC AND SIMULTANEOUS ITERATIVE ALGORITHM

FOR THE MULTIPLE SPLIT COMMON FIXED POINT

PROBLEM OF DEMICONTRACTIVE MAPPINGS

Yu-Chao Tang, Ji-Gen Peng, and Li-Wei Liu

Abstract. The purpose of this paper is to address the multiple split
common fixed point problem. We present two different methods to ap-
proximate a solution of the problem. One is cyclic iteration method; the
other is simultaneous iteration method. Under appropriate assumptions
on the operators and iterative parameters, we prove both the proposed
algorithms converge to the solution of the multiple split common fixed
point problem. Our results generalize and improve some known results
in the literatures.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
respectively. The multiple split common fixed point problem (MSCFPP) was
first introduced in [8], which requires to find a common fixed point of a family of
operators in one space whose image under a linear transformation is a common
fixed point of another family of operators in the image space. The (MSCFPP)
includes the well-known of the multiple-sets split feasibility problem (MSSFP)
(see for example [6, 16]), the split feasibility problem (SFP) (see for example [4,
18, 19, 21] etc.) and the convex feasibility problem (CFP)([1]). The (MSCFPP)
can be stated as follows:

(1.1) Find a point x∗ ∈

p
⋂

i=1

Fix(Ui) such that Ax∗ ∈
r
⋂

j=1

Fix(Tj),

where p, r ≥ 1 are integers, Fix(T ) denotes the fixed point set of T , A : H1 →
H2 is a bounded linear operator, {Ui}

p
i=1 : H1 → H1, {Tj}rj=1 : H2 → H2

are nonlinear operators. In particular, if p = r = 1, then (1.1) reduces to the
following

(1.2) Find a point x∗ ∈ Fix(U) such that Ax∗ ∈ Fix(T ),
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which is usually called the two-sets of (SCFPP).
Under what conditions on the operators {Ui}

p
i=1, {Tj}rj=1 and the matrix

A to guarantee the convergence of the designed algorithm to a solution of
(MSCFPP) (1.1), Censor and Segal [8] first constructed an iterative algorithm
to solve the two sets of (SCFPP) for directed operators (the definition can be
found in Definition 2.4) in finite- dimensional spaces.

Algorithm 1. Let x0 ∈ H1 be arbitrary, the sequence {xn} defined by:

(1.3) xn+1 = U(xn − γAt(I − T )Axn), n ≥ 0,

where γ ∈ (0, 2
λ
) with λ being the largest eigenvalue of the matrix AtA (t

stands for matrix transposition). By using the product space technique, they
introduced a parallel algorithm to solve the (MSCFPP) as follows:

(1.4) xn+1 = xn + γ





p
∑

i=1

αi(Ui(xn)− xn) +

r
∑

j=1

βjA
t(Tj − I)Axn



 , n ≥ 0,

where 0 < γ < 2
L

with L =
∑p

i=1 αi + λ
∑r

j=1 βj .

In 2011, Wang and Xu [14] converted the (MSCFPP) (1.1) to a common
fixed point problem, and introduced a cyclic iterative algorithm to solve the
(MSCFPP) under the assumption that T and U are directed operators. The
advantage of this method is that one can apply the some exists method for
solving the common fixed point problem to (MSCFPP). They proposed the
cyclic iterative algorithm as follows.

Algorithm 2. For any x0 ∈ H1, define a sequence {xn} by the following
iterative procedure:

(1.5) xn+1 = U[n]

(

xn + λ(V[n](xn)− xn)
)

, n ≥ 0,

where [n] := n(mod p) with the mod function taking values in {1, . . . , p}, and
V := I + σA∗(T − I)A with σ ∈ (0, 1/ρ(A∗A)) and λ ∈ (0, 2).

To generalize the (MSCFPP) to a general type of operators, Moudafi [10]
proposed an algorithm for solving the two-sets of (SCFPP) (1.2) for the quasi-
nonexpansive operators in Hilbert spaces. The algorithm is summarized as
follows:

Algorithm 3. Let x0 ∈ H1, and

(1.6) xn+1 = (1 − αn)un + αnU(un), n ≥ 0,

where un = xn + γβA∗(T − I)(Axn), β ∈ (0, 1), αn ∈ (0, 1) and γ ∈ (0, 1
λβ

)

with λ being the spectral radius of the operator A∗A, i.e., λ = ρ(A∗A).
Further, Moudafi [9] generalized the Algorithm 3 to solve the solution set of

the two-sets of (SCFPP) when the operators U and T are demicontractive.

Algorithm 4. Let x0 ∈ H1 be arbitrary, the sequence {xn} is defined by:

(1.7) xn+1 = (1 − αn)un + αnU(un), n ≥ 0,
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where un = xn+γA∗(T − I)Axn, γ ∈ (0, 1−µ
λ

) with λ being the spectral radius
of the operator A∗A and {αn} ⊂ (0, 1).

In [12], we extended the work of Moudafi [9] to the (MSCFPP) (1.1) and
introduced a cyclic iterative algorithm to solve it.

Algorithm 5. Let x0 ∈ H1 be arbitrary, for n ≥ 0, calculate

(1.8) xn+1 = (1− αn)un + αnUi(n)(un), n ≥ 0,

where un = xn+γA∗(Tj(n)−I)Axn, i(n) = n(mod p)+1 and j(n) = n(mod r)+

1. γ ∈ (0, 1−µ
λ

) with λ being the spectral radius of the operator A∗A and
{αn} ⊂ (0, 1).

Although the two-sets of (SCFPP) (1.2) is a special case of (MSCFPP) (1.1),
the algorithm (1.4) can not reduce to the algorithm (1.3). The advantage of the
cyclic iterative algorithm (1.5) and (1.8) is not only can solve the (MSCFPP),
but also can reduce to the corresponding algorithms which are used to solve
the two-sets of (SCFPP).

Inspired and motivated by the above works, we propose two iteration schemes
which can be applied directly to (MSCFPP) (1.1).

1. Simultaneous iteration schemes
For any x0 ∈ H1, define the following iterative sequences

(1.9)

yj,n = xn + γA∗(Tj − I)Axn, j = 1, 2, . . . , r.

un =

r
∑

j=1

ηjyj,n.

zi,n = (1 − αn)un + αnUi(un), i = 1, 2, . . . , p.

The update sequence {xn} is defined by

(1.10) xn+1 =

p
∑

i=1

ωizi,n, n ≥ 0,

where the constant γ > 0, {αn} ⊂ (0, 1), and {ηj}rj=1 ⊂ (0, 1) and {ωi}
p
i=1 ⊂

(0, 1) with
∑r

j=1 ηj = 1 and
∑p

i=1 ωi = 1. The equivalent form of the parallel
iterative sequence can be represented by

(1.11) xn+1 = (1− αn)un + αn

p
∑

i=1

ωiUi



xn + γA∗

r
∑

j=1

ηj(Tj − I)(Axn)



 .

The simultaneous algorithmic structures favor parallel computing platforms. It
also called the parallel iteration method.

2. Cyclic iteration schemes
For any x0 ∈ H1, the iterative sequence {xn} is defined by

(1.12) xn+1 = (1− αn)un + αnU[n] (un) , n ≥ 0,
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where un is given as (1.9), and [n] = n(mod p) + 1, the mod function takes
value in {1, 2, . . . , p}, the constant γ > 0, {αn} ⊂ (0, 1), and {ηj}rj=1 ⊂ (0, 1)

with
∑r

j=1 ηj = 1.
Under mild assumptions on the iterative parameters, we prove both the

algorithms converge weakly to a solution of the (MSCFPP) (1.1).

2. Preliminaries

In this section, we collect some important definitions and prove some useful
lemmas which will be used in the following section. We introduce the following
notations. Ω denotes the solution set of (MSCFPP) (1.1). ωw(xn) = {x :
∃xnj

⇀ x} denotes the weak ω-limit set of {xn}. The symbol ⇀ for weak
convergence and → for strong convergence, respectively.

Definition 2.1. Assume that T : H → H is an operator with Fix(T ) 6= ∅,
(i) T is said to be nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H.

(ii) T is said to be quasi-nonexpansive, if

‖Tx− q‖ ≤ ‖x− q‖ for all x ∈ H, q ∈ Fix(T ).

(iii) T is said to be strictly pseudocontractive, if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2

for all x, y ∈ H , and some k ∈ (0, 1).

It is easily observed that if T is nonexpansive with nonempty Fix(T ), then
T is quasi-nonexpansive.

Definition 2.2 ([9]). An operator T : H → H is called k-demicontractive, if
there exists a constant k ∈ (0, 1) such that

‖Tx− q‖2 ≤ ‖x− q‖2 + k‖x− Tx‖2

for all x ∈ H and q ∈ Fix(T ).

If T is strictly pseudocontractive with Fix(T ) 6= ∅, then T is k-demicontrac-
tive. The next lemma shows two equivalent definition of demicontractive op-
erator.

Lemma 2.1 ([12]). Let T : H → H be k-demicontractive operator such that

Fix(T ) 6= ∅. Then it is equivalent to the following inequalities:

(i) 〈x− Tx, x− q〉 ≥ 1−k
2 ‖x− Tx‖2, q ∈ Fix(T ), x ∈ H ;

(ii) 〈x− Tx, q − Tx〉 ≤ 1+k
2 ‖x− Tx‖2, q ∈ Fix(T ), x ∈ H.

The demiclosedness of the mapping T is important to deal with the conver-
gence of fixed point algorithm.

Definition 2.3. I−T is called demiclosed at zero, if for any sequence {xn} ⊂ H
and x ∈ H , we have xn ⇀ x and xn − Txn → 0, then x ∈ Fix(T ).
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We recall the definition of directed operator which properties can be found
in [8] and [2].

Definition 2.4 ([8]). T is a directed operator, if

〈q − Tx, x− Tx〉 ≤ 0

for all x ∈ H and q ∈ Fix(T ).

The directed operator is also included by the demicontractive operator. We
shall use the notion of Fejér-monotone sequences in the following.

Definition 2.5. Let C be a nonempty closed convex subset of H and {xn} is
a sequence in H . The sequence {xn} is called Fejér-monotone with respect to
C, if

‖xn+1 − z‖ ≤ ‖xn − z‖, n ≥ 0, z ∈ C.

The next lemma can be found in the Chapter 2 of [3].

Lemma 2.2. Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
respectively. Then

(i) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2.
(ii) ‖αx+(1−α)y‖2 = α‖x‖2+(1−α)‖y‖2−α(1−α)‖x− y‖2, ∀x, y ∈ H

and ∀α ∈ [0, 1].

(iii) ‖
∑n

i=1 λixi‖
2
=

∑n

i=1 λi‖xi‖2 −
1
2

∑n

i,j=1 λiλj‖xi − xj‖2, n ≥ 2,

where λi ∈ [0, 1], for all i = 1, 2, . . . , n with
∑n

i=1 λi = 1.

To facilitate our proof, we will make use of the following lemmas.

Lemma 2.3 ([9]). Let T be a k-demicontractive self mapping on H with

Fix(T ) 6= ∅ and set Tα := (1 − α)I + αT for α ∈ (0, 1]. Then, Tα is quasi-

nonexpansive provided that α ∈ [0, 1 − k] and ‖Tαx − q‖2 ≤ ‖x− q‖2 − α(1 −
k − α)‖Tx− x‖2, x ∈ H, q ∈ Fix(T ).

Lemma 2.4 ([1]). If a sequence {xn} is Féjer-monotone respect to a closed

subset of C, then xn ⇀ x∗ ∈ C if and only if ωw(xn) ⊂ C.

3. Main results

Let {Ui}
p
i=1 and {Tj}rj=1 be a finite family of demicontractive mappings.

Then there exists {βi}
p
i=1 ⊂ (0, 1) and {µj}rj=1 ⊂ (0, 1), such that

‖Uix− q‖2 ≤ ‖x− q‖2 + βi‖x− Uix‖
2, x ∈ H, q ∈ Fix(Ui), i = 1, 2, . . . , p,

and

‖Tjx− p‖2 ≤ ‖x− p‖2 + µj‖x− Tjx‖
2, x ∈ H, p ∈ Fix(Tj), j = 1, 2, . . . , r.

Let β = max1≤i≤p{βi}, µ = max1≤j≤r{µj}. Then we have

‖Uix−q‖2 ≤ ‖x−q‖2+β‖x−Uix‖
2 for all x ∈ H, q ∈ Fix(Ui), i = 1, 2, . . . , p,
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and

‖Tjx−p‖2 ≤ ‖x−p‖2+µ‖x−Tjx‖
2 for all x ∈ H, p ∈ Fix(Tj), j = 1, 2, . . . , r.

First, we prove the following lemma.

Lemma 3.1. Let A : H1 → H2 be a bounded linear operator. Assume that

{Ui}
p
i=1 : H1 → H1 be βi-demicontractive and {Tj}rj=1 : H2 → H2 be µj-

demicontractive mappings. If the solution set Ω of (1.1) is nonempty, then the

iterative sequence {xn} generated by (1.10) is the Fejér-monotone, i.e., for any

x ∈ Ω,
‖xn+1 − x‖ ≤ ‖xn − x‖, ∀n ≥ 0,

provided that γ ∈ (0, 1−µ
λ

] and αn ∈ (0, 1− β], where λ is the spectral radius of

the operator A∗A.

Proof. Let x belongs to the solution set Ω. By Lemma 2.3, for any i =
1, 2, . . . , p, we obtain

(3.1) ‖zi,n − x‖2 ≤ ‖un − x‖2 − αn(1− β − αn)‖Ui(un)− un‖
2.

On the other hand, for any j = 1, 2, . . . , r, we have

‖yj,n − x‖2 = ‖xn + γA∗(Tj − I)Axn − x‖2

= ‖xn − x‖2 + γ2‖A∗(Tj − I)Axn‖
2

+ 2γ〈xn − x,A∗(Tj − I)Axn〉

≤ ‖xn − x‖2+ λγ2‖(Tj − I)(Axn)‖
2+ 2γ〈xn − x,A∗(Tj − I)Axn〉.(3.2)

For the last term of the above inequality, by Lemma 2.1(ii), we have

2γ〈xn − x,A∗(Tj − I)Axn〉

= 2γ〈A(xn − x), (Tj − I)(Axn)〉

= 2γ〈A(xn − x) + (Tj − I)(Axn)− (Tj − I)(Axn), (Tj − I)(Axn)〉

= 2γ
(

〈Tj(Axn)−Ax, (Tj − I)(Axn)〉 − ‖(Tj − I)(Axn)‖
2
)

≤ 2γ

(

1 + µ

2
‖(Tj − I)(Axn)‖

2 − ‖(Tj − I)(Axn)‖
2

)

= −γ(1− µ)‖(Tj − I)(Axn)‖
2.(3.3)

Substituting (3.3) into (3.2), we get

(3.4) ‖yj,n − x‖2 ≤ ‖xn − x‖2 − γ(1− µ− λγ)‖(Tj − I)(Axn)‖
2.

It follows from Lemma 2.2, un =
∑r

j=1 ηjyj,n and (3.4), we obtain

‖un − x‖2 =

∥

∥

∥

∥

∥

∥

r
∑

j=1

ηjyj,n − x

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

r
∑

j=1

ηj(yj,n − x)

∥

∥

∥

∥

∥

∥

2

≤
r

∑

j=1

ηj‖yj,n − x‖2
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≤ ‖xn − x‖2 − γ(1− µ− λγ)

r
∑

j=1

ηj‖(Tj − I)(Axn)‖
2.(3.5)

Finally, we prove the Fejér-monotone of the sequence {xn}. In fact, by Lemma
2.2, (3.1) and (3.5), we obtain

‖xn+1 − x‖2 =

∥

∥

∥

∥

∥

p
∑

i=1

ωizi,n − x

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

p
∑

i=1

ωi(zi,n − x)

∥

∥

∥

∥

∥

2

≤

p
∑

i=1

ωi‖zi,n − x‖2

≤ ‖un − x‖2 − αn(1− β − αn)

p
∑

i=1

ωi‖Ui(un)− un‖
2

≤ ‖xn − x‖2 − αn(1 − β − αn)

p
∑

i=1

ωi‖Ui(un)− un‖
2

− γ(1− µ− λγ)
r

∑

j=1

ηj‖(Tj − I)(Axn)‖
2.

Since γ ∈ (0, 1−µ
λ

] and αn ∈ (0, 1−β], so the sequence {xn} is Fejér-monotone.
This completes the proof. �

Now, we prove the convergence of the simultaneous iteration scheme.

Theorem 3.1. Let A : H1 → H2 be a bounded linear operator. Let {Ui}
p
i=1 :

H1 → H1 be βi-demicontractive and {Tj}rj=1 : H2 → H2 be µj-demicontractive

mapping. Assume that {I −Ui}
p
i=1 and {I − Tj}rj=1 are demiclosed at zero. If

the solution set Ω of (1.1) is nonempty, then the sequence {xn} generated by

(1.10) converges weakly to a solution of the Ω, provided that γ ∈ (0, 1−µ
λ

) and

αn ∈ (δ, 1− β − δ) for a small δ > 0.

Proof. From the last inequality of Lemma 3.1, and the requirement of the
parameters γ and αn in Theorem 3.1, we conclude that

∞
∑

n=0

p
∑

i=1

ωi‖Ui(un)− un‖
2 < +∞ for any i = 1, 2, . . . , p,

and
∞
∑

n=0

r
∑

j=1

ηj‖(Tj − I)(Axn)‖
2 < +∞ for any j = 1, 2, . . . , r.
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Therefore,

(3.6) lim
n→∞

‖Ui(un)− un‖ = 0

for any i = 1, 2, . . . , p and

(3.7) lim
n→∞

‖(Tj − I)(Axn)‖ = 0

for any j = 1, 2, . . . , r.
It follows from the Fejér-monotonicity of the sequence {xn} that the sequence

{xn} is bounded and ωw(xn) is nonempty. Let x∗ ∈ ωw(xn). Then there
exists a subsequence {xnk

} of {xn} such that xnk
⇀ x∗. By the demiclosed of

{I − Tj}rj=1 at 0 and (3.7), we obtain

(Tj − I)(Ax∗) = 0 for any j = 1, 2 . . . , r,

i.e.,

Ax∗ ∈
r
⋂

j=1

Fix(Tj).

Since yj,n = xn + γA∗(Tj − I)(Axn), it follows that yj,nk
⇀ x∗ and unk

=
∑r

j=1 ηjyj,nk
⇀ x∗. Notice that the (3.6), and {I − Ui}

p
i=1 are demiclosed at

0, therefore, Ui(x
∗) = x∗ for all i = 1, 2, . . . , p, i.e., x∗ ∈

⋂p
i=1 Fix(Ui). So

x∗ ∈ Ω. Therefore, by the Fejér monotonicity of {xn} with respect to Ω, we
can apply Lemma 2.4 to conclude that {xn} converges weakly to a solution of
Ω. This completes the proof. �

We have proven the weak convergence of the parallel iterative method. Now,
we are ready to prove the convergence of cyclic iterative sequence defined in
(1.12) to the problem (1.1). Similarly, we need the following lemma to facilitate
the main convergence theorem.

Lemma 3.2. Let A : H1 → H2 be a bounded linear operator. Assume that

{Ui}
p
i=1 : H1 → H1 be βi-demicontractive and {Tj}rj=1 : H2 → H2 be µj-

demicontractive mappings. If the solution set Ω of (1.1) is nonempty, then the

iterative sequence {xn} generated by (1.12) is the Fejér-monotone, i.e., for any

x ∈ Ω,

‖xn+1 − x‖ ≤ ‖xn − x‖, ∀n ≥ 0,

provided that γ ∈ (0, 1−µ
λ

] and αn ∈ (0, 1− β], where λ is the spectral radius of

the operator A∗A.

Proof. The proof is similar to the Lemma 3.1, we give the highlight for simple.
Let x ∈ Ω, since the definition of {un} in the cyclic iterative method (1.12) is
the same as in the parallel iterative method (1.10), by (3.5), we have

‖un − x‖2 ≤ ‖xn − x‖2 − γ(1− µ− λγ)
r

∑

j=1

ηj‖(Tj − I)(Axn)‖
2.
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Therefore, we obtain

‖xn+1 − x‖2 ≤ ‖un − x‖2 − αn(1 − β − αn)‖U[n](un)− un‖
2

≤ ‖xn − x‖2 − αn(1 − β − αn)‖U[n](un)− un‖
2

− γ(1− µ− λγ)

r
∑

j=1

ηj‖(Tj − I)(Axn)‖
2.(3.8)

It follows from the restriction on the parameters of γ and αn that {xn} is
Fejér-monotone sequence. This completes the proof. �

Theorem 3.2. Let A : H1 → H2 be a bounded linear operator. Let {Ui}
p
i=1 :

H1 → H1 be βi-demicontractive and {Tj}rj=1 : H2 → H2 be µj-demicontractive

mappings. Assume that {I − Ui}
p
i=1 and {I − Tj}rj=1 are demiclosed at zero,

and {Ui}
p
i=1 are continuous. If the solution set Ω of (1.1) is nonempty, then

the sequence {xn} generated by (1.12) converges weakly to a solution of the Ω,
provided that γ ∈ (0, 1−µ

λ
) and αn ∈ (δ, 1− β − δ) for a small δ > 0.

Proof. From the inequality (3.8), and the fact that αn ∈ (δ, 1 − β − δ) and

γ ∈ (0, 1−µ
λ

), we have

∞
∑

n=0

‖U[n](un)− un‖
2 < +∞,

and
∞
∑

n=0

r
∑

j=1

ηj‖(Tj − I)(Axn)‖
2 < +∞.

Therefore,

(3.9) lim
n→∞

‖U[n](un)− un‖ = 0,

and

(3.10) lim
n→∞

‖(Tj − I)(Axn)‖ = 0 for any j = 1, 2, . . . , r.

Since the sequence {xn} is Fejér-monotone, so it is bounded. Let x∗ ∈ wω(xn).
Take a subsequence {xnk

} of {xn} such that xnk
⇀ x∗. By the demiclosedness

of {I − Tj}rj=1 and the fact (3.10), we get

(Tj − I)(Ax∗) = 0 for any j = 1, 2, . . . , r,

then

Ax∗ ∈
r
⋂

j=1

Fix(Tj).
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Next, we show that x∗ ∈
⋂p

i=1 Fix(Ui). In fact, from the definition of {xn}
and Lemma 2.2, we have

‖xn+1 − xn‖
2 =

∥

∥

∥

∥

∥

∥

αn(U[n](un)− un) + γ
r

∑

j=1

ηjA
∗(Tj − I)(Axn)

∥

∥

∥

∥

∥

∥

2

≤ 2α2
n‖U[n](un)− un‖

2 + 2γ2

∥

∥

∥

∥

∥

∥

r
∑

j=1

ηjA
∗(Tj − I)(Axn)

∥

∥

∥

∥

∥

∥

2

≤ 2α2
n‖U[n](un)− un‖

2 + 2γ2
r

∑

j=1

ηjλ‖(Tj − I)(Axn)‖
2.

It follows from the (3.9) and (3.10) that

lim
n→∞

‖xn+1 − xn‖ = 0.

Therefore,

‖un+1 − un‖
2

=

∥

∥

∥

∥

∥

∥

r
∑

j=1

ηj(yi,n+1 − yj,n)

∥

∥

∥

∥

∥

∥

2

≤
r

∑

j=1

ηj‖yj,n+1 − yj,n‖
2

=
r

∑

j=1

ηj ‖xn+1 − xn + γA∗(Tj − I)(Axn+1)− γA∗(Tj − I)(Axn)‖
2

≤ 2‖xn+1 − xn‖
2 + 2γ2

r
∑

j=1

ηj‖A
∗(Tj − I)(Axn+1 −Axn)‖

2

≤ 2‖xn+1 − xn‖
2 + 2γ2

r
∑

j=1

ηjλ‖(Tj − I)(Axn+1 −Axn)‖
2

→ 0 as n → ∞.

Then, for any i = 1, 2, . . . , p, ‖un+i − un‖ → 0 as n → ∞, and

‖un − U[n+i](un)‖ ≤ ‖un − un+i‖+ ‖un+i − U[n+i](un+i)‖

+ ‖U[n+i](un+i)− U[n+i](un)‖,

From (3.9) and the continuity of {Ui}
p
i=1, we have

lim
n→∞

‖un − U[n+i](un)‖ = 0.
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It is now clear that for each k ∈ {1, 2, . . . , p}, there exists i ∈ {1, 2, . . . , p} such
that k = (n+ i)(mod p) + 1, then

lim
n→∞

‖un − Ukun‖ = lim
n→∞

‖un − U[n+i](un)‖ = 0.

Since I−Uk is demiclosedness at zero and x∗ ∈ ωw(un), so x∗ ∈
⋂p

i=1 Fix(Ui).
Then the weak convergence of the iterative sequence {xn} can be obtained by
Lemma 2.4. This completes the proof. �

Remark 3.1. The simultaneous (parallel) iteration method and cyclic iteration
method are two common ways to solve the convex feasibility problem. Although
the parallel iteration scheme (1.4) can not be reduced to (1.3), the simultaneous
iteration scheme (1.10) for the multiple split common fixed point problem which
can be reduced to the original iteration scheme (1.7) by letting p = r = 1. We
also propose a new cyclic iteration scheme (1.12) which is different from (1.8).
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