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ASYMPTOTIC PROPERTIES OF

THE HYPERBOLIC METRIC ON THE SPHERE

WITH THREE CONICAL SINGULARITIES

Tanran Zhang

Abstract. The explicit formula for the hyperbolic metric λα, β, γ(z)|dz|
on the thrice-punctured sphere P\{0, 1, ∞} with singularities of order
0 < α, β < 1, γ ≤ 1, α+ β + γ > 2 at 0, 1, ∞ was given by Kraus, Roth
and Sugawa in [9]. In this article we investigate the asymptotic properties
of the higher order derivatives of λα, β, γ(z) near the origin and give more
precise descriptions for the asymptotic behavior of λα, β, γ(z).

1. Introduction

The hyperbolic metric, also called the Poincaré metric, plays an important
role in geometric function theory. Suppose that X is a hyperbolic Riemann
surface. A smooth conformal metric λ(z)|dz| on X is the hyperbolic metric if
and only if it is complete and its Gaussian curvature κλ = (∆ log λ)/λ2 is a
negative constant (see [5, Theorem 5.9], and [14]). In this article we normalize
the curvature to be −4 for the hyperbolic metric. In particular, if X is compact,
the hyperbolic metric on X is characterized only by κλ ≡ −4. What happens
if λ(z)|dz| admits finitely many singularities on a compact Riemann surface
X? Due to Nitsche [11], if the conformal metric λ(z)|dz| of the curvature −4
on X has an isolated singularity at a point p0 with z(p0) = z0 for the local
coordinate z, the limit

α = lim
r→0

sup|z−z0|=r logλ(z)

− log r
,

exists and α ≤ 1 (see also [7]). Thus the following problem for the existence
and uniqueness comes up: Does there exist a complete conformal metric of
constant curvature −4 on the compact Riemann surface X , with the prescribed
singularities pj ∈ X of order αj , j = 1, 2, . . ., and is it unique if it exists? Heins
[4] proved that, for X of genus g and singularities p1, . . . , pN ∈ X of orders

α1, . . . , αN , such a metric exists if and only if 2g − 2 +
∑N

j=1 αj > 0, and it
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is unique if it exists. This metric is called the generalized hyperbolic metric.
As a spacial case of Heins’ result, Picard [12] gave a result for X of genus
0. Troyanov [13] discussed conditions under which a function on a Riemann
surface is the Gaussian curvature of some conformal metric with a prescribed
set of singularities of conical type.

Generally, an explicit formula for the hyperbolic metric on a hyperbolic
plane domain is hard to find and by now it is known explicitly only for a few
cases. Nitsche [11] studied the asymptotic behavior of the hyperbolic metric
near an isolated singularity. Kraus and Roth [7] extended Nitsche’s work to a
conformal metric λ(z)|dz| with negative, Hölder continuous curvature function
κ(z) near the singularity. They estimated the first and second order derivatives
of logλ(z) near the origin. The author [16] further complemented their results
by giving the estimates for higher order derivatives. It is important to ver-
ify the sharpness of the estimates, and furthermore, to consider more precise
information for the asymptotic properties of logλ(z). Thus we investigate a
special conformal metric. According to Picard’s result [12], the maximal hy-

perbolic plane domain is the thrice-punctured Riemann sphere Ĉ\{z1, z2, z3}.

Therefore the generalized hyperbolic metric on Ĉ\{z1, z2, z3} has its own sig-
nificance since it helps to determine the precise asymptotic properties near a

singularity. In the (normalized) thrice-punctured Riemann sphere Ĉ\{0, 1, ∞}
with singularities of orders α, β, γ at 0, 1, ∞, respectively, where 0 < α, β < 1,
γ ≤ 1, α + β + γ > 2, Kraus, Roth, and Sugawa [9] gave an explicit formula
for the hyperbolic metric λα, β, γ(z)|dz| in terms of some special functions. In
this article, we will examine sharpness of the estimates given in [7] and [16], by
using the generalized hyperbolic metric λα, β, γ(z)|dz| near the origin. We will
further show that certain limits exist, which is stronger than order estimates
(see Theorems 3.4 and 4.1).

In 1997, Minda [10] studied the behavior of the hyperbolic metric in a neigh-
borhood of a puncture on the plane domain using the uniformisation theorem
for up to second order derivatives. His results can be extended to higher order
derivatives of a conformal metric with negative curvature on an arbitrary hy-
perbolic region (see [16]). However, if the order α < 1, this kind of limit l may
depend not only on α, but also on the shape of the domain, or the properties
of the curvature function. In this article, we will observe it by examining the
case of the generalized hyperbolic metric λα, β, γ(z).

2. Preliminaries

For complex numbers a, b, c with c 6= 0, −1, −2, . . ., the Gaussian hyperge-
ometric function is defined as

F (a, b, c; z) =

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, |z| < 1,
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where (a)n is the Pochhammer symbol, namely, (a)0 = 1 and (a)n = a(a +
1) · · · (a+n−1) for n = 1, 2, 3, . . .. It is continued analytically to the slit plane
C\[1,+∞). Its derivative is given by

(2.1)
d

dz
F (a, b, c; z) =

ab

c
F (a+ 1, b+ 1, c+ 1; z).

We can immediately obtain

(2.2)
dn

dzn
F (a, b, c; z) =

(a)n(b)n
(c)n

F (a+ n, b+ n, c+ n; z).

We have

F (a, b, c; z)(2.3)

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a+ b− c+ 1; 1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b+ 1; 1− z)

for | arg(1−z)| < π, where Γ(z) is Gamma function (see [1, 15.3.6]). Each term
of (2.3) has a singularity at z = 1 when c = a+ b+n, n = 0, 1, 2, . . ., and this
case is covered by

F (a, b, a+ b + n; z)(2.4)

=
Γ(n)Γ(a+ b+ n)

Γ(a+ n)Γ(b+ n)

n−1∑

j=0

(a)j(b)j
j!(1− n)j

(1− z)j

−
Γ(a+ b+ n)

Γ(a)Γ(b)
(z − 1)n

∞∑

j=0

(a+n)j(b+n)j
j!(j+n)! (1 − z)j[log(1 − z)

−Ψ(j + 1)−Ψ(j + n+ 1) + Ψ(a+ j + n) + Ψ(b+ j + n)]

for | arg(1 − z)| < π, |1 − z| < 1, where Ψ(z) = Γ′(z)/Γ(z) is the digamma

function (see [1, 15.3.11]). We take the convention that
∑b

j=a = 0 if b < a here
and after. The behavior of the hypergeometric function near z = 1 satisfies

(2.5)





F (a, b, c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) , if a+ b < c,

F (a, b, a+ b; z) = 1
B(a,b)

(
log 1

1−z +R(a, b)
)
(1 +O(1− z)),

F (a, b, c; z) = (1− z)c−a−bF (c− a, c− b, c; z), if a+ b > c,

where

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(2.6)

is Beta function and

R(a, b) = 2Ψ(1)−Ψ(a)−Ψ(b).(2.7)
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The asymptotic formula in (2.5) for the case a + b = c is due to Ramanujan
(see [1, 2]).

In the domain Ω ⊆ C, every continuous function λ : Ω → (0,+∞) induces
a conformal metric, denoted by λ(z)|dz|, on Ω (see [4, 8]). We call λ(z) the
density function of the metric λ(z)|dz|. Suppose that Ω is a hyperbolic plane
domain. For a point p ∈ Ω, let z be local coordinates such that z(p) = 0. We
say a conformal metric λ(z)|dz| on the punctured domain Ω∗ := Ω\{p} has a
conical singularity of order α ≤ 1 at the point p, if, in local coordinates z,

logλ(z) =

{
−α log |z|+ v(z) if α < 1,
− log |z| − log log(1/|z|) + w(z) if α = 1,

(2.8)

where v(z), w(z) = O(1) as z(p) → 0 with O and o being the Landau symbols
in this article. For u(z) := logλ(z), the order α of λ(z)|dz| at the conical
singularity p is again the order of u(z) at the conical singularity log p. We call
the point p a corner of order α if α < 1 and a cusp if α = 1. It is evident that
the cusp is the limit case of a corner.

A conformal metric λ(z)|dz| on a domain Ω ⊆ C is regular, if its density
λ(z) is positive and twice continuously differentiable on G, i.e., λ(z) ∈ C2(G).
The Gaussian curvature κλ(z) of a regular conformal metric λ(z)|dz| is defined
by

κλ(z) = −
∆ logλ(z)

λ(z)2
, where ∆ =

∂2

∂x2
+

∂2

∂y2
, z = x+ iy.

A very basic property of Gaussian curvature is the conformal invariance (see
e.g. [5]).

The hyperbolic metric of the Gaussian curvature −4 on the unit disk D is
given by

λD(z)|dz| =
|dz|

1− |z|
2 .

The hyperbolic metric λΩ(w)|dw| on a hyperbolic domain Ω is defined by

λΩ(w)|dw| =
λD(z)

π′(z)|
|dw|,

where π : D → Ω is the universal covering projection, π(z) = ω. The fol-
lowing result gives the explicit formula for the generalized hyperbolic metric

on Ĉ\{0, 1, ∞}. The terminology generalized hyperbolic metric is motivated
by the fact that if all singularities are cusps, then we get back the standard

hyperbolic metric on the punctured sphere Ĉ\{z1, . . . , zn} (see [9]).

Theorem A ([10]). Let 0 < α, β < 1 and 0 < γ ≤ 1 satisfying α + β +
γ > 2. Then the generalized hyperbolic density on the thrice-punctured sphere

Ĉ\{0, 1, ∞} of orders α, β, γ at 0, 1, ∞, respectively, can be expressed by

λα, β, γ(z)
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=
1

|z|α|1− z|β
·

K3

K1|ϕ1(z)|2 +K2|ϕ2(z)|2 + 2Re(ϕ1(z)ϕ2(z̄))
(2.9)

=
1

|z|α|1− z|β
·

δ(1− α)

|ϕ1(z)|2 − δ2|1− z|2−2α|ϕ3(z)|2
(2.10)

in the twice-punctured plane C\{0, 1}, where

K1 := −
Γ(c− a)Γ(c− b)

Γ(c)Γ(c− a− b)
, K2 := −

Γ(a+ 1− c)Γ(b + 1− c)

Γ(1− c)Γ(a+ b+ 1− c)
,(2.11)

K3 :=

√
sin(πa) sin(πb)

sin(π(c− a)) sin(π(c − b))
·
Γ(a+ b+ 1− c)Γ(c)

Γ(a)Γ(b)

and

ϕ1(z) = F (a, b, c; z), ϕ2(z) = F (a, b, a+ b − c+ 1; 1− z),

ϕ3(z) = F (a− c+ 1, b− c+ 1, 2− c; z),

with

(2.12) a =
α+ β − γ

2
, b =

α+ β + γ − 2

2
, c = α;

(2.13) δ =
Γ(c)

Γ(2− c)

(
Γ(1− a)Γ(1− b)Γ(a+ 1− c)Γ(b+ 1− c)

Γ(a)Γ(b)Γ(c− a)Γ(c− b)

)1/2

.

The Gaussian curvature of λα, β, γ(z) defined by (2.9) and (2.10) is −4. Note

that ϕ1 and ϕ3 are analytic in C\[1, +∞), ϕ2 is analytic in C\(−∞, 0].

We denote λ(z) = λα,β,γ(z) briefly in the rest of this article. The following
theorem is due to Kraus, Roth and Sugawa [9]. They did not give the explicit
formula of (2.14), but it is easy to deduce it from (2.10).

Theorem B. Let 0 < α < 1. Then for the hyperbolic density λ(z) given in

(2.10), we have

lim
z→0

|z|αλ(z) =
δ

1− δ2
(1− α),(2.14)

where δ is as in (2.13), a, b and c are as in (2.12).

3. Case 0 < α < 1

In this section we focus on the hyperbolic metric λ(z)|dz| when 0 < α < 1.
We can consider the asymptotic behavior of λ(z) only near the origin. By the
expression of λ(z), we know that the singularity z = 1 is in the same situation
as the origin. As for the infinity, we can change the coordinates by a conformal
function, say, z 7→ 1/z, to map ∞ to 0. So it is convenient to consider the case
near the origin. In expression (2.9), for orders 0 < α, β < 1 and 0 < γ ≤ 1, the
real parameters a, b, c given by condition (2.12) satisfy

−
1

2
< a < 1, −1 < b <

1

2
, 0 < c < 1.
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Denote

∂n :=
∂n

∂zn
, ∂̄n :=

∂n

∂z̄n

for n ≥ 1. At first we give a lemma for the future use.

Lemma 3.1. For λ(z) as in (2.9) with order α ∈ (0, 1), let

M(z) : = K1|ϕ1(z)|
2 +K2|ϕ2(z)|

2 + 2Re (ϕ1(z)ϕ2(z̄))

= (K1ϕ1(z̄) + ϕ2(z̄))ϕ1(z) + (K2ϕ2(z̄) + ϕ1(z̄))ϕ2(z).(3.1)

Then for a, b and c defined in (2.12), K1 and K2 given by (2.11),

(i) limz→0 ∂M(z) = ab
c

(
K1 −

1
K2

)
for 0 < α < 1/2,

(ii) ∂M(z) = 2ab
(
K1 −

1
K2

)
+ 2K2Y (a, b, c) z̄

|z| +O
(
|z|

1
2

)
for α = 1/2,

(iii) limz→0 z
n|z|2α−2∂nM(z) = (−1)n−1(c)n−1K2Y (a,b,c)

1−c for n ≥ 2 if 0 < α ≤

1/2 and n ≥ 1 if 1/2 < α < 1,
(iv) lim

z→0
z̄mzn|z|2α−2∂̄m∂nM(z) = (−1)n+m(c)n−1(c)m−1K2Y (a, b, c) for m,

n ≥ 1, where

Y (a, b, c) =

(
Γ(c)Γ(a+ b− c+ 1)

Γ(a)Γ(b)

)2

.(3.2)

Remark. The relation (ii) can be expressed by ∂M(z) = O(1). It is easy to see
that there is no non-vanishing limit such as in (iii) for n = 1 and α = 1/2.

Proof of Lemma 3.1. Since ϕ1(z), ϕ2(z) are analytic in C\[1,+∞), C\(−∞, 0],

respectively, we have ∂nϕ1(z) = ∂̄n (ϕ1(z̄)) for z ∈ C\[1, +∞), and ∂nϕ2(z) =
∂̄n (ϕ2(z̄)) for z ∈ C\(−∞, 0]. For the limit in (i), we have

∂M(z) = (K1ϕ1(z̄) + ϕ2(z̄))∂ϕ1(z) + (K2ϕ2(z̄) + ϕ1(z̄))∂ϕ2(z).

From the property (2.2),

∂ϕ1(0) =
ab

c
.(3.3)

By (2.5),

ϕ2(0) = F (a, b, a+ b− c+ 1; 1) = −
1

K2
, ϕ1(0) = 1,(3.4)

provided that a+ b < a+ b− c+ 1. Thus

K1ϕ1(0) + ϕ2(0) = K1 −K2
−1.(3.5)

Now we consider the term (K2ϕ2(z̄) + ϕ1(z̄))∂ϕ2(z), which satisfies

lim
z→0

(K2ϕ2(z) + ϕ1(z)) = 0.

Note that

ϕ2(z) = F (a, b, a+ b− c+ 1; 1− z)
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=
Γ(a+ b− c+ 1)Γ(1− c)

Γ(b − c+ 1)Γ(a− c+ 1)
F (a, b, c; z)

+ z1−c
√
Y (a, b, c)F (b− c+ 1, a− c+ 1, 2− c; z)

= −
1

K2
ϕ1(z) + z1−c

√
Y (a, b, c)F (b− c+ 1, a− c+ 1, 2− c; z)

for | arg(z)| < π, which means ϕ1(z) and ϕ2(z) are related. Hence

(3.6) K2ϕ2(z) + ϕ1(z) =
−K2z

1−c

1− c

√
Y (a, b, c)F (b− c+ 1, a− c+ 1, 2− c; z)

and

lim
z→0

K2ϕ2(z) + ϕ1(z)

z1−c
=

−K2

1− c

√
Y (a, b, c).(3.7)

Near the origin, by (2.2), for n ≥ 1,

∂nϕ2(z) = ∂̄nϕ2(z̄)

(3.8)

=
(a)n(b)n

(a+ b− c+ 1)n
(−1)nF (a+ n, b+ n, a+ b− c+ 1+ n; 1− z).

By property (2.3), we have

F (a+ n, b+ n, a+ b− c+ 1 + n; 1− z)

=
Γ(a+ b− c+ 1 + n)Γ(1− c− n)

Γ(b − c+ 1)Γ(a− c+ 1)
F (a+ n, b+ n, c+ n; z)

+ z1−c−nΓ(a+ b− c+ 1 + n)Γ(c+ n− 1)

Γ(a+ n)Γ(b+ n)
F (b− c+ 1, a− c+ 1, 2− c− n; z)

for | arg(z)| < π. Then near the origin, substituting the expression above into
(3.8), we have

∂nϕ2(z)

(3.9)

=
(a)n(b)n

(a+ b− c+ 1)n
(−1)n

Γ(a+ b− c+ 1 + n)Γ(1− c− n)

Γ(b − c+ 1)Γ(a− c+ 1)
F (a+ n, b+ n, c+ n; z)

+
(−1)n

zn+c−1

Γ(a+ b− c+ 1)Γ(c+ n− 1)

Γ(a)Γ(b)
F (b− c+ 1, a− c+ 1, 2− c− n; z),

which leads to the limit

(3.10) lim
z→0

zn+c−1∂nϕ2(z) = (−1)n(c)n−1

√
Y (a, b, c).

Letting n = 1 in (3.9) and combining with (3.6), we have

lim
z→0

(K2ϕ2(z̄) + ϕ1(z̄))∂ϕ2(z) = 0
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if 0 < c = α < 1
2 . Thus

lim
z→0

∂M(z) = lim
z→0

(K1ϕ1(z̄) + ϕ2(z̄))∂ϕ1(z) =
ab

c

(
K1 −

1

K2

)

provided (3.3) and (3.5).
We note that (3.6) and (3.9) are still valid for n = 1, α = 1/2, and combining

with (3.3) and (3.4), the relation (ii) hold.
For the relation (iii), at first we have

(3.11) ∂nM(z) = (K1ϕ1(z̄) + ϕ2(z̄))∂
nϕ1(z) + (K2ϕ2(z̄) + ϕ1(z̄))∂

nϕ2(z).

From the property (2.2),

∂nϕ1(0) =
(a)n(b)n
(c)n

(3.12)

for n ≥ 1. Since n > 2α − 2 for all n ≥ 2 and 0 < α < 1, from (3.12) and
(3.5), we know that the limit in (iii) is only determined by the term (K2ϕ2(z̄)+
ϕ1(z̄))∂

nϕ2(z). Combining with (3.11), (3.10) and (3.7), we have

lim
z→0

zn|z|2α−2∂nM(z)

= lim
z→0

zn|z|2α−2(K2ϕ2(z̄) + ϕ1(z̄))∂
nϕ2(z)

= lim
z→0

K2ϕ2(z̄) + ϕ1(z̄)

z̄1−α

zn

z1−α
∂nϕ2(z)

= lim
z→0

K2ϕ2(z̄) + ϕ1(z̄)

z̄1−c
· lim
z→0

zn+c−1∂nϕ2(z)

=
(−1)n−1(c)n−1K2

1− c
Y (a, b, c)

as in the relation (iii).
For the relation (iv), if m ≥ 1, n ≥ 1, we have

∂̄m∂nM(z)

= (K1∂̄
mϕ1(z̄) + ∂̄mϕ2(z̄))∂

nϕ1(z) + (K2∂̄
mϕ2(z̄) + ∂̄mϕ1(z̄))∂

nϕ2(z).

Since limz→0 z
n+c−1∂nϕ1(z) = 0, we can obtain

lim
z→0

z̄mzn|z|2α−2∂̄m∂nM(z)

= lim
z→0

z̄mzn

|z|2−2c
K2∂̄

mϕ2(z̄)∂
nϕ2(z)

= lim
z→0

K2
z̄m

z̄1−c
∂̄mϕ2(z̄) ·

zn

z1−c
∂nϕ2(z)

= (−1)m+n(c)m−1(c)n−1K2Y (a, b, c)

as in the relation (iv). �

We denote u(z) := logλ(z) in the rest of this article. There are also some
limits for u(z) when z is tending to the origin.
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Theorem 3.2. For u(z) defined as above, if the order α ∈ (0, 1), for m, n ≥ 1
and Y (a, b, c) as in (3.2), we have

(i) limz→0 z
n∂nu(z) = α

2 (−1)n(n− 1)! = limz→0 z̄
n∂̄nu(z),

(ii) limz→0 z̄
mzn|z|2α−2∂̄m∂nu(z) =

(−1)n+m(c)n−1(c)m−1K
2
2Y (a,b,c)

K1K2−1 .

Proof. We note that

u(z) = −α log |z| − β log |1− z|+ logK3 − logM(z)

with M(z) as in (3.1). At first we consider ∂n logM(z). By (3.4),

M(0) = K1ϕ1(0) + ϕ2(0) = K1 −
1

K2
.(3.13)

Then M(0) > 0 for a, b, c given by (2.12). When 0 < α < 1, from Lemma 3.1
we have

lim
z→0

zk∂kM(z) = 0(3.14)

for k ≥ 1. Observe that ∂n logM(z) is the linear combination of products of
∂kM/M with k ≤ n, then for n ≥ 1, (3.14) leads to limz→0 z

n∂n logM(z) = 0.
Since

∂n log |1− z| = −
(n− 1)!

2(1− z)n
, ∂n log |z| =

(−1)n−1(n− 1)!

2zn
,

the first equality in (i) holds.
The second equality of (i) is obtained if we note that u(z) is real-valued, and

then

lim
z→0

z̄n∂̄nu(z) = lim
z→0

zn∂nu(z) =
α

2
(−1)n(n− 1)!.

Now we discuss the term ∂̄m∂n logM(z) to prove the relation (ii). Since
∂̄m∂n logM(z) is the linear combination of products of ∂̄t∂kM/M with 0 ≤
t ≤ m, 0 ≤ k ≤ n, Lemma 3.1 implies that

lim
z→0

z̄mzn|z|2α−2
N∏

j=2

∂̄tj∂kjM(z)

M(z)
= 0,

where 2 ≤ N ≤ m+n, 1 ≤ tj ≤ m and 1 ≤ kj ≤ n for every index j, 2 ≤ j ≤ N .
Thus

lim
z→0

z̄mzn|z|2α−2∂̄m∂n logM(z)

= lim
z→0

z̄mzn|z|2α−2 ∂̄
m∂nM(z)

M(z)

=
(−1)n+m(c)n−1(c)m−1K

2
2

K1K2 − 1
Y (a, b, c).

Note that ∂̄m∂n log |1− z| = 0, ∂̄m∂n log |z| = 0, therefore (ii) holds. �
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Remark. The relation (i) of Theorem 3.2 is a specific version of (i) in Theorem
4.1 [16], and here we proved it in a different way. However, the relation (ii) of
Theorem 3.2 is stronger than (ii) of Theorem 4.1 in [16].

For the hyperbolic metric, the following result corresponding to Theorem
1.2 in [16] holds.

Theorem 3.3. For m, n ≥ 0, 0 < α < 1 and λ(z) as in (2.9), the limit

lm,n :=
1

m!n!
lim
z→0

|z|αz̄mzn∂̄m∂nλ(z)

exists, and

lm,n =

(
−α

2

n

)(
−α

2

m

)
l0,0,

where (
τ

j

)
=

τ(τ − 1) · · · (τ − j + 1)

j !

is the binomial coefficient.

Proof. By Theorem B,

l0, 0 = lim
z→0

|z|αλ(z) =
δ

1− δ2
(1− α).(3.15)

Since

∂λ(z) = λ(z) ∂u(z)(3.16)

we have

∂nλ(z) =

n−1∑

j=0

(
n− 1

j

)
∂n−ju(z) ∂jλ(z)

by induction, where ∂0λ(z) = ∂̄0λ(z) = λ(z). Then

l0, n =
1

n!
lim
z→0

n−1∑

j=0

(
n− 1

j

)
zn−j∂n−ju(z) · |z|αzj∂jλ(z).

From (i) of Theorem 3.2, limz→0 z
n−j∂n−ju(z) exists, then l0, n exists. When

m = 0, n = 1, (3.15) and (3.16) lead to

l0,1 = lim
z→0

|z|αz∂λ(z) = lim
z→0

|z|αλ(z) · z∂u(z) = −
α

2
l0,0,

which is a real number, hence l1,0 = l0,1 = l0,1. Note that

∂̄nλ(z) =

n−1∑

j=0

(
n− 1

j

)
∂̄n−ju(z) ∂̄jλ(z),(3.17)

then by induction

ln, 0 = l0, n.(3.18)
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From (ii) in Theorem 3.2, we know limz→0 z̄
mzn∂̄m∂nu(z) = 0. This means

that we can write lm,n as a sum of the terms not containing any mixed deriva-
tives of u(z),

(3.19) lm,n =
1

m!n!
lim
z→0

n−1∑

j=0

(
n− 1

j

)
zn−j∂n−ju(z) |z|αz̄mzj∂̄m∂jλ(z).

By (3.19) and (i) of Theorem 3.2, we have

lm,n =
n−1∑

j=0

lim
z→0

1

m!n!

(n− 1)!

j!(n− 1− j)!
zn−j∂n−ju(z) · |z|αz̄mzj∂̄m∂jλ(z)

=
1

n

n−1∑

j=0

1

m!

1

j!(n− 1− j)!
lim
z→0

zn−j∂n−ju(z) · lim
z→0

|z|αz̄mzj∂̄m∂jλ(z)

=
1

n

n−1∑

j=0

α(−1)n−j

2

1

m!j!
lim
z→0

|z|αz̄mzj∂̄m∂jλ(z) =
α

2n

n−1∑

j=1

(−1)n−j lm, j .

Thus

n · lm,n =
α

2

n−2∑

j=0

(−1)n−jlm, j −
α

2
lm,n−1 = −(n− 1)lm,n−1 −

α

2
lm,n−1.

Combining with (3.18), we have

lm,n =
−α

2 − n+ 1

n
lm,n−1 = · · · =

(
−α

2

n

)
lm, 0

=

(
−α

2

n

)
l0,m =

(
−α

2

n

)(
−α

2

m

)
l0, 0.

�

When the order α ∈ (0, 1), the sharpness of Theorem 1.1 [16] can be verified
by the following result.

Theorem 3.4. For λ given by (2.9) with the order α ∈ (0, 1) and Y (a, b, c)
given by (3.2), near the origin, the remainder function v(z) satisfies

(i) limz→0 ∂v(z) =
ab
c for 0 < α < 1/2,

(ii) ∂v(z) = 2ab+
2K2

2Y (a,b,c)
K1K2−1

z̄
|z| +O

(
|z|

1
2

)
near the origin for α = 1/2,

(iii) limz→0 z
n|z|2α−2∂nv(z) =

(−1)n−1(c)n−1K
2
2Y (a,b,c)

(1−c)(K1K2−1) for n ≥ 2 if 0 < α ≤

1/2 and n ≥ 1 if 1/2 < α < 1,

(iv) limz→0 z̄
mzn|z|2α−2∂̄m∂nv(z) =

(−1)n+m(c)n−1(c)m−1K
2
2Y (a,b,c)

K1K2−1 for m, n
≥ 1.

Proof. Since v(z) = −β log |1− z|+ logK3 − logM(z) and

∂n log |1− z| =
−(n− 1)!

2(1− z)n
,
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we can consider ∂n logM(z) only. From the proof of Theorem 3.2, we know
that the limits limz→0 ∂v(z) and limz→0 z

n|z|2α−2∂nv(z), n ≥ 2, both depend
on the term ∂nM(z). By Lemma 3.1 and (3.13),

lim
z→0

∂v(z) = lim
z→0

∂M(z)

M(z)
,

lim
z→0

zn|z|2α−2∂nv(z) = lim
z→0

zn|z|2α−2∂
nM(z)

M(z)
.

Thus we obtain the four cases above corresponding to ones in Lemma 3.1. �

4. Case α = 1

When α = 1, the formula for λ1, β,γ(z) is to be understood in the limit sense
limα→1− λα, β,γ(z). Moreover, when α = 1 we have

ϕ1(z) = F (a, b, 1; z), ϕ2(z) = F (a, b, a+ b; 1− z),

K1 = −
S

B
, K2 = 0, K3 =

1

B(a, b)
:=

1

B
,

where

S :=
π sin(π(a+ b))

sinπa sinπb
,(4.1)

and then

(4.2) λ1, β,γ(z) =
1

|z|

1

|1− z|β
K3

K1|ϕ1(z)|2 + ϕ1(z)ϕ2(z̄) + ϕ1(z̄)ϕ2(z)
.

Let M(z) := K1|ϕ1(z)|
2 + ϕ1(z)ϕ2(z̄) + ϕ1(z̄)ϕ2(z). Then near the origin, the

remainder function is

(4.3) w(z) = −β log |1− z|+ logK3 − logM(z) + log log(1/|z|).

The assumption of Theorem A and (2.12) show that a and b satisfy

0 < a < 1, 0 < b < 1/2, 0 < a+ b < 1.

The function

2R− S = 4Ψ(1)− 2Ψ(a)− 2Ψ(b)− π cotπa− π cotπb(4.4)

is of special interest where R := R(a, b) is as in (2.7) and S is given by (4.1).
Let G(x) := 2 (Ψ(1)−Ψ(x))− π cotπx. For Gamma function Γ(x), 0 < x < 1,
we have Γ(x)Γ(1 − x) = π/ sinπx. Taking the logarithmic derivatives of both
sides leads to

Γ′(x)

Γ(x)
−

Γ′(1− x)

Γ(1− x)
= −π cotπx.

Thus

G(x) = 2Ψ(1)−Ψ(x)−Ψ(1− x),(4.5)
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which means G(x) = G(1 − x). If 0 < x < 1, the fact that the digamma
function Φ(x) is negative and decreasing implies that G(x) > 0. Since 2R−S =
G(a) +G(b), 2R− S > 0 for all a, b given by (2.12).

For λ1, β, γ(z) as in (4.2), we can obtain the precise estimate for higher order
derivatives of w(z) near the origin.

Theorem 4.1. Suppose that λ(z) is given by (4.2) with α = 1, β and γ sat-

isfying the condition in Theorem A, and w(z) is the remainder function as in

(4.3). Then for m, n ≥ 1, we have

(i) limz→0 z
n log2(1/|z|)∂nw(z) = (−1)n(n−1)!

4 (G(a) +G(b)),

(ii) limz→0 z
nz̄m log3(1/|z|)∂̄m∂nw(z) = (−1)m+n−1(n−1)!(m−1)!

4 (G(a)+G(b)),
where the function G is defined by (4.5) and a, b are given by (2.12).

For the proof of Theorem 4.2, we need the following lemma.

Lemma 4.2. For m ≥ 1, n ≥ 1, we have

∂n log log(1/|z|) =
An

zn log(1/|z|)
+

Bn

zn log2(1/|z|)
+O

(
1

zn log3(1/|z|)

)
,

∂̄m∂n log log(1/|z|) =
Cm

z̄mzn log2(1/|z|)
+

Dm

z̄mzn log3(1/|z|)
+O

(
1

z̄mzn log4(1/|z|)

)
,

where

An =
(−1)n

2
(n− 1)!,(4.6)

Bn =
(−1)n−1

4
(n− 1)!

n−1∑

j=1

1

j
,(4.7)

Cm =
(−1)m+n−1

4
(m− 1)!(n− 1)!,(4.8)

Dm =
(−1)m+n

4
(m− 1)!(n− 1)!




n−1∑

j=1

1

j
+

m−1∑

j=1

1

j


 .(4.9)

Proof. By induction we know that

∂n log log(1/|z|) =
n∑

j=1

C
(n)
j

zn logj(1/|z|)
,

∂̄m∂n log log(1/|z|) =

m∑

j=1

C
(m,n)
j

z̄mzn logj+1(1/|z|)

with constants C
(n)
j and C

(m,n)
j , 1 ≤ j ≤ m, 1 ≤ j ≤ n. As for the pure

derivative ∂n log log(1/|z|), set An := C
(n)
1 and Bn := C

(n)
2 , hence

∂n log log(1/|z|) =
An

zn log(1/|z|)
+

Bn

zn log2(1/|z|)
+

n∑

j=3

C
(n)
j

zn logj(1/|z|)
,
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then the following recurrent relations hold,

A1 = −
1

2
, B1 = 0, An = −(n− 1)An−1, Bn = −(n− 1)Bn−1 +

1

2
An−1.

Thus we obtain (4.6) and (4.7). For the mixed derivative case, we fix n and set

Cm := C
(m, n)
1 , Dm := C

(m, n)
2 . Then by induction we have

C1 =
1

2
An, D1 = Bn, Cm = −(m− 1)Cm−1, Dm = −(m− 1)Dm−1 + Cm−1.

Therefore (4.8) and (4.9) hold. �

Proof of Theorem 4.1. For the remainder function w(z) given by (4.3), we dis-

cuss ∂nM(z)
M(z) , n ≥ 1 at first. Note that

∂nϕ1(z) =
(a)n(b)n

n!
F (a+ n, b+ n, n+ 1; z),

∂nϕ2(z) = (−1)n
(a)n(b)n
(a+ b)n

F (a+ n, b+ n, a+ b+ n; 1− z),

then

∂nϕ1(0) =
(a)n(b)n

n!
,(4.10)

and near the origin, by (2.5) we have

∂nϕ2(z) =
(a)n(b)n
(a+ b)n

(−1)n

zn
F (b, a, a+ b+ n; 1− z).

Property (2.4) shows that

F (b, a, a+ b+ n; 1− z) =
Γ(a+ b+ n)Γ(n)

Γ(a+ n)Γ(b+ n)
+O(|z| log |z|)

near the origin. Thus

∂nϕ2(z) =
(−1)n

zn
(a)n(b)n
(a+ b)n

(
Γ(a+ b+ n)Γ(n)

Γ(a+ n)Γ(b + n)
+O(|z| log |z|)

)

=
(−1)n(n− 1)!

Bzn
+O

(
log |z|

|z|n−1

)
.(4.11)

By (2.5) we know

ϕ2(z) =
1

B

(
log

1

z
+R

)
(1 +O(z)) .(4.12)

From (4.10), (4.11) and (4.12), we obtain

∂nM(z) = (K1ϕ1(z̄) + ϕ2(z̄))∂
nϕ1(z) + ϕ1(z̄)∂

nϕ2(z)

=
(a)n(b)n
B n!

log
1

z̄
+

(−1)n(n− 1)!

Bzn
+O

(
log |z|

|z|n−1

)

and

M(z) = K1ϕ1(z̄)ϕ1(z) + ϕ2(z̄)ϕ1(z) + ϕ1(z̄)ϕ2(z)
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=
2 log(1/|z|)

B

(
1 +

2R− S

2 log(1/|z|)
+O(|z|)

)

near the origin. Then

∂nM(z)

M(z)
= ∂nM(z)

B

2 log(1/|z|)

(
1−

2R− S

2 log(1/|z|)
+O(|z|)

)

=
(−1)n(n− 1)!

2zn log(1/|z|)
−

(−1)n(n− 1)!(G(a) +G(b))

4zn log2(1/|z|)
+O

(
1

|z|n−1

)
.(4.13)

If we note that

∂̄m∂nM(z) = (K1∂̄
mϕ1(z̄) + ∂̄mϕ2(z̄))∂

nϕ1(z) + ∂̄mϕ1(z̄)∂
nϕ2(z)

=
(−1)m(m− 1)!

Bz̄m
(a)n(b)n

n!
+

(−1)n(n− 1)!

Bzn
(a)m(b)m

m!

+O

(
log |z|

|z|m−1

)
+O

(
log |z|

|z|n−1

)
,

the same technique leads to

∂̄m∂nM(z)

M(z)
= O

(
1

|z|τ log(1/|z|)

)
,(4.14)

where τ = max{m, n} < m+ n.

Now we consider derivatives of w(z). In the pure derivative case,

∂nw(z) =
β(n− 1)!

2(1− z)n
− ∂n logM(z) + ∂n log log(1/|z|).(4.15)

Note that ∂n logM(z) is the linear combination of finitely many terms in the
form

N∏

j=1

∂njM(z)

M(z)
(4.16)

for 1 ≤ N ≤ n and
∑k

j=1 nj = n. When N = 1, term (4.16) is equal to ∂nM(z)
M(z) .

By induction we know the coefficient of ∂nM(z)
M(z) in ∂n logM(z) is always 1.

Note that the term contains z−n log−1(1/|z|) in ∂n logM(z) only appears in
∂nM(z)/M(z), and then (4.6), (4.13), (4.15) show that this term is canceled

in ∂nw(z). Now we look at the term which contains z−n log−2(1/|z|) in (4.15),

while the higher power terms in ∂nM(z)
M(z) are ignored for a moment. For (4.16),

estimate (4.13) shows that

N∏

j=1

∂njM(z)

M(z)
= O

(
1

zn logN (1/|z|)

)
for n =

N∑

j=1

nj,
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therefore, to generate the z−n log−2(1/|z|) term, N is at most 2, thus the
z−n log−2 |z| term of ∂n logM(z) only appears in

∂nM

M
−

1

2

n−1∑

j=1

(
n

j

)
∂jM∂n−jM

M2
.

For every 1 ≤ j ≤ n− 1, letting n = 1 in (4.13), we have

∂jM∂n−jM

M2
=

∂jM

M
·
∂n−jM

M
(4.17)

=
(−1)n(j − 1)!(n− j − 1)!

4zn log2 |z|
+O(

1

|z|n log3(1/|z|)
).

Let kn be the coefficient of z−n log−2 |z| in
∑n−1

j=1

(
n
j

)
(∂jM∂n−jM/M2). Then

(4.17) leads to

kn =
n−1∑

j=1

(
n

j

)
(−1)n(j − 1)!(n− j − 1)!

4
=

(−1)n(n− 1)!

4

n−1∑

j=1

n

j(n− j)

=
(−1)n(n− 1)!

4

n−1∑

j=1

(
1

j
+

1

n− j

)
=

(−1)n(n− 1)!

2

n−1∑

j=1

1

j
= −2Bn,(4.18)

where Bn is given by (4.7). From (4.7) and (4.18), we obtain

lim
z→0

zn log2(1/|z|)∂nw(z) =
(−1)n(n− 1)!(G(a) +G(b))

4
+

1

2
kn + Bn

=
(−1)n(n− 1)!

4
(G(a) +G(b)),

thus (i) holds.
For the mixed derivative,

∂̄m∂nw(z) = −∂̄m∂n logM(z) + ∂̄m∂n log log(1/|z|).

It is known that M(z) = M(z̄) and ∂̄m∂n logM(z) = ∂̄n∂m logM(z). Hence
without loss of generality we may assume m ≤ n. Note that in ∂̄m∂n logM(z),
the term z̄−mz−n log−2(1/|z|) with coefficient (−1)m+n(n− 1)!(m− 1)!/4 only
occurs in ∂̄mM∂nM/M2, from (4.8) we know that there is no term contains

z̄−mz−n log−2(1/|z|) left in the expression for ∂̄m∂nw(z). Therefore the coeffi-
cient of z−nz̄−m log−3(1/|z|) is desired. The term contains z−nz̄−m log−3(1/|z|)
is the product of at most three terms in the forms of ∂njM/M or ∂̄mjM/M .
By (4.14) and (4.13), the term z−nz̄−m log−3(1/|z|) in ∂̄m∂n logM(z) only
appears in

−
∂̄mM∂nM

M2
+

∂̄mM

M

n−1∑

j=1

(
n

k

)
∂jM∂n−jM

M2
+

∂nM

M

m−1∑

j=1

(
m

k

)
∂̄jM∂̄m−jM

M2
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for m ≥ 1, n ≥ 1. Then, similar to kn given by (4.18),

∂̄m∂n logM(z) =
tm,n

znz̄m log3(1/|z|)
+O

(
1

|z|m+n+1 log3(1/|z|)

)

with

(4.19) tm,n =


G(a) +G(b) +

n−1∑

j=1

1

j
+

m−1∑

j=1

1

j


 (−1)m+n(m− 1)!(n− 1)!

4
.

Thus for m ≥ 1, n ≥ 1, by (4.9) and (4.19), we obtain

lim
z→0

znz̄m log3(1/|z|)∂̄m∂nw(z) = −tm,n +Dm

=
(−1)m+n−1(n− 1)!(m− 1)!

4
(G(a) +G(b))

This completes the proof. �

Remark. Theorem 4.1 verifies the sharpness of Theorem 1.1 in [16] when the
order of the singularity is 1.

When α = 1, there is an analogue of Theorem 3.2 and Theorem 3.3, see [16],
also [3] and [7]. Here we list them as follows without proof.

Theorem 4.3. For λ(z) := λ1, β,γ(z) as in (4.2), let u(z) := logλ(z). Then

for m, n ≥ 1,
(i) limz→0 z

n∂nu(z) = 1
2 (−1)n(n− 1)! = limz→0 z̄

n∂̄nu(z),

(ii) limz→0 z̄
mzn log2(1/|z|)∂̄m∂nu(z) = (−1)n+m(n−1)!(m−1)!

4 .

Theorem C ([15]). For m, n ≥ 0, α = 1 and λ(z) as in (4.2), the limit

l′m,n :=
1

n!m!
lim
z→0

|z| log(1/|z|)z̄mzn∂̄m∂nλ(z)

exists. Moreover, the numbers l′m,n satisfy the following.

(i) l′0, 0 := limz→0 |z| log(1/|z|)λ(z) =
1
2 ,

(ii) l′m,n = 1
2

(
− 1

2

n

)(
− 1

2

m

)
,

(iii) l′m,n = l′n,m.
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