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MULTIPLE PERIODIC SOLUTIONS OF

SECOND-ORDER ORDINARY DIFFERENTIAL

EQUATIONS ACROSS RESONANCE

Hua Cai, Xiaojun Chang, and Xin Zhao

Abstract. In this paper we study the existence of multiple periodic so-
lutions of second-order ordinary differential equations. New results of
multiplicity of periodic solutions are obtained when the nonlinearity may
cross multiple consecutive eigenvalues. The arguments are proceeded by
a combination of variational and degree theoretic methods.

1. Introduction and main results

This paper is devoted to the existence of multiple periodic solutions for the
second-order nonlinear ordinary differential equation

{

−ẍ = f(t, x),
x(0) = x(2π), ẋ(0) = ẋ(2π),

(1.1)

where f ∈ C(R2,R), f(t+ T, x) = f(t, x) for all (t, x) ∈ R
2, T > 0, f(t, 0) = 0.

Clearly, the problem (1.1) has a trivial solution x = 0. Our goal is to obtain
multiple nontrivial periodic solutions of problem (1.1) when the nonlinearity f

grows linearly and the “ratio” 2F (t,s)
s2

stays asymptotically at infinity between
two consecutive eigenvalues of linear periodic boundary value problem

{

−ẍ = λx,

x(0) = x(2π), ẋ(0) = ẋ(2π),
(1.2)

where F (t, s) ≡
∫ s

0
f(t, τ)dτ . The eigenvalues {k2}k∈N of the problem (1.2) are

usually called resonant points of the problem (1.1).
Various works in the literature are devoted to resonant problems for ordinary

or partial differential equations during the last several decades since the pioneer
work Landesman and Lazer [21]. In these papers growth restrictions have

been required on both the ratios f(t,s)
s

and 2F (t,s)
s2

to control the interference
of the nonlinearity with the eigenvalues of the associated linear problem (see
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[4, 5, 8, 9, 10, 15, 17, 18, 20, 23, 26]). Among these works, Fabry and Fonda [15],
Omari and Zanolin [26] established the solvability of (1.1) under the following
so-called double-resonance conditions

k2 ≤ lim inf
|s|→∞

f(t, s)

s
≤ lim sup

|s|→∞

f(t, s)

s
≤ (k + 1)2(1.3)

for some k ∈ N and uniformly for a.e. t ∈ [0, 2π] and some additional conditions
imposed on f . Papageorgion and Staicu [27], Su and Zhao [28] studied the ex-
istence of multiple periodic solutions for problem (1.1) when double resonance
occurs, where they assumed (1.3) and some generalization of the well-known
Landesman-Lazer conditions (LL-conditions for short), see Landesman-Lazer
[21], Fabry-Fonda [15] and Iannacci-Nkashama [20]. Under the additional as-
sumption (1.6) or f ′(t, 0) < 0 with f being C1, they both established the
existence of at least two nontrivial solutions of (1.1). Recently, Barletta and
Papageorgiou [2] used the variational methods together with Morse theory to
obtain six nontrivial solutions of problem (1.1) when the nonlinearity is reso-
nant both at infinity and at zero. In this paper, we shall show that if (1.3) with
LL-conditions are replaced by the assumptions (1.4) and (1.5), problem (1.1)
still admits at least two nontrivial solutions. Furthermore, if (1.4) and (1.5)
are replaced by some stronger conditions (1.7) and (1.8), then we may obtain
more nontrivial solutions. Note that in our results we don’t require the ratio
f(t,s)

s
stays asymptotically at infinity between two consecutive eigenvalues of

(1.2), so the ratio f(t,s)
s

may cross resonant points {k2} asymptotically. Our
method is a combination of variational method and degree theory.

Besides the above cited papers, for related works on resonant problems we
also refer the interested reader to see [6, 7, 12, 13, 14, 16, 23, 29, 30] etc and
the references therein.

Let H1
[0,2π] denote the Sobolev space

H1
[0,2π] = {x : [0, 2π] → R | x is absolutely continuous, x(0) = x(2π),

∫ 2π

0

|ẋ|2 + |x|2dt <∞}

equipped with the usual inner product and norm

(x, y) =

∫ 2π

0

(ẋẏ + xy)dt, ‖x‖ = (x, x)
1
2 , ∀x, y ∈ H1

[0,2π].

Define the functional I : H1
[0,2π] → R by

I(x) =

∫ 2π

0

[
1

2
|ẋ(t)|2 − F (t, x)]dt.

Obviously, I ∈ C1(H1
[0,2π],R) (see [24]) and

[∇I(x)](y) =
∫ 2π

0

[ẋẏ − f(t, x)y]dt, ∀x, y ∈ H1
[0,2π].
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It is well known that x is a weak solution of (1.1) if and only if x is a critical
point of the functional I.

Our main results are as follows.

Theorem 1.1. Assume that f ∈ C([0, 2π]×R,R) and the following conditions

hold:
(i) there exist η1,M,M1 > 0 such that

η1 ≤ f(t, s)

s
≤M for |s| ≥M1, a.e. t ∈ [0, 2π];(1.4)

(ii)

k2 ≤ l(t) ≡ lim inf
|s|→∞

2F (t, s)

s2
≤ lim sup

|s|→∞

2F (t, s)

s2
≡ r(t) ≤ (k + 1)2(1.5)

for a.e. t ∈ [0, 2π] and some k ∈ Z
+;

(iii) there exists s1 > 0 such that

F (t, s) ≤ 0(1.6)

for a.e. t ∈ [0, 2π] and all s ∈ R with |s| ≤ s1.

Then the problem (1.1) admits at least one nontrivial nonnegative solution

and one nontrivial nonpositive solution.

Theorem 1.2. Assume that f ∈ C([0, 2π] × R,R) with f(t, x) = g(x) + e(t)
and (1.6) holds. Suppose that the following conditions hold:

(i) there exist η2, C, C1 > 0 such that

η2 ≤ g(s)

s
≤ C for |s| ≥ C1;(1.7)

(ii) there exist p, q > 0 such that

k2 < p ≤ l(t) ≤ r(t) ≤ q < (k + 1)2(1.8)

for a.e. t ∈ [0, 2π] and some k ∈ Z
+.

Then we have the following results:
(i) if k is odd, then the problem (1.1) possesses at least two nontrivial

solutions; if k is even, then the problem (1.1) possesses at least three nontrivial

solutions, one of which is nonnegative, and another one is nonpositive;
(ii) if all the critical points of the functional I is nondegenerate, then the

problem (1.1) admits at least four nontrivial solutions;
(iii) if g ∈ C1(R,R) and there exists β > 0 such that

g′(s) ≤ β < (k + 1)2(1.9)

for all s ∈ R, then the problem (1.1) admits at least four nontrivial solutions.

This paper is organized as follows. In § 2, the proof of Theorem 1.1 is
presented. In § 3, we give the proof of Theorem 1.2.

For convenience, we introduce some notations and definitions. Lp(0, 2π)(1 <
p <∞) denotes the usual Sobolev space with inner product 〈, 〉p and norm ‖·‖p
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respectively. Cm[0, 2π] denotes the space ofm-times continuous differential real
functions with norm

‖x‖Cm = max
t∈[0,2π]

|x(t)| + max
t∈[0,2π]

|ẋ(t)|+ · · ·+ max
t∈[0,2π]

|x(m)(t)|.

Note the eigenvalues {k2}k∈N are simple, and we denote E(k2) (k ∈ N) the
eigenspace corresponding to k2. Let

V = E(02)⊕ E(12)⊕ · · · ⊕ E(k2), W = E((k + 1)2)⊕ E((k + 2)2)⊕ · · ·.
Then

H1
[0,2π] = V ⊕W

and we can write x ∈ H1
[0,2π] as x = v + w, where

v(t) = a0 +
k

∑

i=1

(ai cos(it) + bi sin(it)) ∈ V,

w(t) =

∞
∑

i=k+1

(ai cos(it) + bi sin(it)) ∈ W.

2. Proof of Theorem 1.1

Let f+ : [0, 2π]× R → R be the function defined by

f+(t, s) =

{

f(t, s) + s, s ≥ 0,
0, s < 0

and F+(t, s) =
∫ s

0
f+(t, τ)dτ . Define the functional I+ : H1

[0,2π] → R as follows

I+1 (x) =

∫ 2π

0

[
1

2
(|ẋ|2 + |x|2)− F+(t, x)]dt.

By (1.4), I+1 ∈ C1(H1
[0,2π],R). We assume that the set of all critical points of

I+1 is finite. In what follows, to obtain the critical points of I+1 , we first show
that the functional I+1 has a mountain pass geometry. Precisely, since H1

[0,2π]

is embedded compactly into C[0, 2π], we can find c0 > 0 such that

‖x‖∞ ≤ c0‖x‖ for all x ∈ H1
[0,2π].

Set δ0 = s1
c0
. Then, for all x ∈ H1

[0,2π] with ‖x‖ ≤ δ0, we get

|x(t)| ≤ c0‖x‖ ≤ s1, a.e. t ∈ [0, 2π].

In view of (1.6), we have

F+(t, x) ≤ 0 for all ‖x‖ ≤ δ0, a.e. t ∈ [0, 2π].

Hence, for x ∈ B̄δ0 with Bδ0 ≡ {x ∈ H1
[0,2π] | ‖x‖ < δ0}, it follows that

I+1 (x) ≥
∫ 2π

0

1

2
|ẋ|2dt ≥ 0 = I+1 (0),(2.1)
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which implies 0 is a local minimizer of I+1 . Since we assume that I+1 has finite
critical points, we can find δ > 0 such that

inf
∂Bδ

I+1 > 0 = I+1 (0).(2.2)

Note that

I+1 (s) = −
∫ 2π

0

F+(t, s)dt for s ∈ R
+.

By (1.5) it follows that

I+1 (s) → −∞ as s→ ∞.

Specially, there exists x0 ∈ H1
[0,2π] with ‖x0‖ > δ0 such that

I+1 (x0) < 0.

In what follows we come to prove that I+1 satisfies the (PS) condition. Assume
that {xn}n∈N ⊂ H1

[0,2π] is a sequence such that for some M > 0,

|I+1 (xn)| ≤M, ∇I+1 (xn) → 0 as n→ ∞.(2.3)

It suffices to prove that {xn}n∈N is bounded in H1
[0,2π]. Then a standard ar-

gument shows that {xn}n∈N has a convergent subsequence, which implies that
I+1 satisfies the (PS) condition. On the contrary, suppose that {xn}n∈N is
unbounded in H1

[0,2π], i.e.,

‖xn‖ → ∞ as n→ ∞.(2.4)

Let zn = xn

‖xn‖
. Then ‖zn‖ = 1 and upon passing to a subsequence, there exists

some z0 ∈ H1
[0,2π] such that

zn ⇀ z0 in H1
[0,2π], zn → z0 uniformly on [0, 2π].(2.5)

In view of (2.3), for all φ ∈ H1
[0,2π], we have

∫ 2π

0

[żnφ̇+ znφ− f+(t, xn)

‖xn‖
φ]dt → 0 as n→ ∞.(2.6)

By (1.4), f+(t,xn)
‖xn‖

remains bounded in L2[0, 2π]. Thus, for a subsequence

f+(t,xn)
‖xn‖

converges weakly in L2[0, 2π] to some f̃+ ∈ L2[0, 2π] and by stan-

dard arguments based on (1.4), f̃+ can be written as

f̃+(t) = m(t)z0(t),(2.7)

where m ∈ L∞(0, 2π) satisfies

|m(t)| ≤ C for a.e. t ∈ [0, 2π].

Consequently, by (2.5)-(2.7), z0 is a solution of
{

−z̈0 + z0 = m(t)z0 in [0, 2π],
z0(0) = z0(2π), ż0(0) = ż0(2π).

(2.8)
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Define

Ω+ = {t ∈ [0, 2π] | z0(t) > 0}, Ω− = {t ∈ [0, 2π] | z0(t) < 0},
Ω0 = {t ∈ [0, 2π] | z0(t) = 0}.

Then we consider the three cases respectively.
(i) On Ω+. For t ∈ Ω+, we have

xn(t) = zn(t)‖xn‖ → +∞ as n→ +∞,

which implies that there exists n1 ∈ Z
+ such that xn(t) > M1 for all t ∈ Ω+ if

n ≥ n1. Hence by (1.4),

η1 + 1 ≤ f+(t, xn(t))

xn(t)
≤M + 1 for n ≥ n1.

Then by standard arguments it follows that

η1 + 1 ≤ m(t) ≤M + 1 for t ∈ Ω+.

(ii) On Ω−. For t ∈ Ω−, we have

xn(t) = zn(t)‖xn‖ → −∞ as n→ +∞,

which implies that there exists n2 ∈ Z
+ such that xn(t) < −M1 for all t ∈ Ω−

if n ≥ n2. Then we get

f+(t, xn(t)) ≡ 0 for n ≥ n1.

Hence
m(t) ≡ 0 for t ∈ Ω−.

(iii) On Ω0. Firstly by virtue of (1.5) we can see that there exist M2 > 0,
b1 ∈ L∞(0, 2π) such that

|f(t, xn(t))| ≤M2|xn(t)|+ b1(t).(2.9)

For any given t ∈ Ω0, if |xn(t)| ≤M1, then by (2.9) we have

|f(t, xn(t))| ≤M2M1 + b1(t).

Since ‖xn‖ → ∞, we obtain that

f+(t, xn)

‖xn‖
→ 0;

if |xn(t)| ≥M1, then

0 ≤ f+(t, xn)

xn
≤M + 1.

Hence we have
0 ≤ m(t) ≤M + 1 for t ∈ Ω0.

Now, acting on (2.8) with z−0 we can get z0 ≥ 0. Thus, meas(Ω−) = 0. In
addition, by the former of (2.3), we obtain

|∇I+1 (xn) · xn|
‖xn‖2

=

∣

∣

∣

∣

1−
∫ 2π

0

f+(t, xn)

‖xn‖
zndt

∣

∣

∣

∣

→ 0,
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so that
∫ 2π

0

f+(t, xn)

xn
z2ndt→ 1.

Then, by (2.5) and (2.7), we have
∫ 2π

0

m(t)z20(t)dt = 1.(2.10)

Hence z0 6≡ 0. By modifying m(t) on Ω0 if necessary, we may assume that
η1 + 1 ≤ m(t) ≤M + 1 on Ω0. Then we have

η1 + 1 ≤ m(t) ≤M + 1 a.e. t ∈ [0, 2π].(2.11)

Integrating (2.8) on [0, 2π] we have
∫ 2π

0 (m(t) − 1)z0(t)dt = 0, which implies
that

(m(t)− 1)z0(t) = 0 a.e. in [0, 2π].(2.12)

Acting on (2.8) with z0 we get

0 ≤
∫ 2π

0

|ż0(t)|2dt =
∫ 2π

0

(m(t)− 1)z20(t)dt = 0.

Together with (2.11) and (2.12) we can see z0 ≡ 0 on [0, 2π]. A contradiction.
Thus {xn}n∈N is bounded in H1

[0,2π] and standard arguments imply that I+1
satisfies the (PS) condition. Therefore, by the mountain pass theorem, I+1
has a critical point x+ with I+1 (x+) ≥ I+1 (x) |∂Bδ

> 0. By the assumption of
f+ we can see that x+ ≥ 0 with x+ 6≡ 0 and x+ is a nontrivial nonnegative
critical point of I, which implies that (1.1) admits a nontrivial nonnegative
weak solution x+. Similar arguments show that (1.1) also admits a nontrivial
nonpositive weak solution x−. The proof is complete.

3. Proof of Theorem 1.2

Lemma 3.1. If 0 is an isolated critical point, then there exists ρ0 small such

that

deg(∇I, Bρ, 0) = 1 for all 0 < ρ ≤ ρ0.

Proof. Similar arguments as in the proof of Theorem 1.1 imply that 0 is a strict
local minimizer of I. Then the conclusion is obtained by Corollary 2 of Amann
[1]. �

Lemma 3.2. Under the assumption of Theorem 1.2, the problem (1.1) admits

a nontrivial nonnegative solution x+ and a nontrivial nonpositive solution x−.

Furthermore, there exist r1, d1 > 0 small such that

deg(∇I, Br(x
+), 0) = −1 for all 0 < r ≤ r1(3.1)

and

deg(∇I, Bd(x
−), 0) = −1 for all 0 < d ≤ d1,(3.2)

where Br(x) = {y ∈ H1
[0,2π] | ‖y − x‖ < r}.
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Proof. Note that (1.7) and (1.8) imply that (1.4) and (1.5). Then by Theorem
1.1, (1.1) possesses a nontrivial nonnegative solution x+ and a nontrivial non-
positive solution x−. The arguments in the proof of Theorem 1.1 show that x+

and x− are both of mountain pass type. Then, by Theorems 1 and 2 of [19],
they both have local degree −1 and (3.1), (3.2) hold. �

Lemma 3.3. Assume that f ∈ C([0, 2π]× R,R) and (1.7), (1.8) hold. If x is

a solution of (1.1), then there exists a constant C2 > 0 such that

‖x‖C1 ≤ C2.(3.3)

Proof. We assume by the contradiction that there exists a sequence of 2π-
periodic solutions {xn(t)}∞1 of (1.1) corresponding to sequence {λn}∞1 ⊂ [0, 1]
such that

‖xn‖C1 → ∞ as n→ ∞.(3.4)

Define zn(t) =
xn(t)

‖xn‖C1
. Then ‖zn‖C1 = 1 and zn satisfies

−z̈n(t) =
f(t, xn)

‖xn‖C1

.(3.5)

By (1.7), there must be some M > 0 such that

|z̈n(t)| ≤M, ∀t ∈ [0, 2π],

which implies that {zn(t)} and {żn(t)} are uniformly bounded and equicon-
tinuous on [0, 2π]. Then by the Arzela-Ascoli theorem, taking subsequences if
possible, it follows that

zn(t) → z̄(t), żn(t) → ˙̄z(t) as n→ ∞(3.6)

hold for some z̄ ∈ C1[0, 2π] with ‖z̄(t)‖C1 = 1 on [0, 2π]. We prove now the
following fact.

Claim 1. There exists d > 0 such that, for each n, there exists tn ∈ [0, 2π]
such that

|xn(tn)| ≤ d.(3.7)

Proof. Firstly, in view of (1.7), we can take d > 0 large enough such that

f(t,−d) < 0 < f(t, d), ∀t ∈ [0, 2π].(3.8)

Secondly, we shall show that there exists d > 0 satisfying (3.8) such that, for
any n, the following conclusions hold.

min
t∈[0,2π]

xn(t) 6= d, max
t∈[0,2π]

xn(t) 6= −d.(3.9)

We assume by contradiction that there is some j ∈ Z
+ and t0 ∈ [0, 2π] such that

mint∈[0,2π] xj(t) = xj(t0) = d. By (3.8), it follows that there exist ǫj , δj > 0
such that

−ẍj(t) = f(t, xj(t)) ≥ ǫj
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hold for t ∈ [t0 − δj , t0 + δj ]. Thus, taking t1 ∈ [t0 − δj , t0), by ẋj(t0) = 0, we
have

xj(t1)− xj(t0) =

∫ t0

t1

ẍj(s)(s − t1)ds < 0,

which is impossible. Thus the claim is right. �

By the boundedness of the sequence {tn}, passing to a subsequence if pos-
sible, there exists t̂ ∈ [0, 2π] such that

tn → t̂ as n→ ∞.(3.10)

Multiplying both sides of (3.5) by żn(t) and integrating from tn to t, we have

[żn(tn)]
2 − [żn(t)]

2 =
2G(xn(t))

x2n(t)
(zn(t))

2 − 2G(xn(tn))

xn
(zn(tn))

2(3.11)

+

∫ t

tn

e(s)

‖xn‖C1

żn(s)ds,

where G(s) =
∫ s

0 g(τ)dτ . By (3.7) it follows that

lim
n→∞

zn(tn) = lim
m→∞

xn(tn)

‖xn‖C1

= 0.(3.12)

Taking a superior limit in (3.11), together with (3.6), (3.10) and (3.12), we can
obtain that

[ ˙̄z(t̂)]2 − [ ˙̄z(t)]2 = lim sup
n→∞

2G(xn(t))

x2n(t)
· z̄2(t).

Now by (1.8) it follows that

[ ˙̄z(t)]2 − [ ˙̄z(t̂)]2 + q[z̄(t)]2 ≥ 0.(3.13)

Similarly, we can obtain that

[ ˙̄z(t)]2 − [ ˙̄z(t̂)]2 + p[z̄(t)]2 ≤ 0.(3.14)

Hence, by (3.13)-(3.14), for t ∈ [0, 2π], we have

p[z̄(t)]2 ≤ [ ˙̄z(t̂)]2 − [ ˙̄z(t)]2 ≤ q[z̄(t)]2.(3.15)

Claim 2. ˙̄z(t) has no zero accumulation points on [0, 2π].

Proof. In fact, if not, we assume that there exists a sequence {ξi} ⊂ [0, 2π]
such that

˙̄z(ξi) = 0, lim
i→∞

ξi = ξ0 ∈ [0, 2π].

Clearly, ˙̄z(ξ0) = 0. Taking t = ξi in (3.15) and letting i→ ∞, it is not difficult
to see that z̄(ξ0) 6= 0. Without loss of generality, we assume that z̄(ξ0) > 0.
By the continuity of z̄(t), there exist ǫ, δ > 0 such that

z̄(t) ≥ ǫ, ∀t ∈ [ξ0 − δ, ξ0 + δ].

Then, there exists n0 ∈ Z
+ such that, for n ≥ n0,

xn(t) ≥ C1, ∀t ∈ [ξ0 − δ, ξ0 + δ].(3.16)
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In view of (1.7), (1.8), we can see that

g(xn(t))

xn(t)
≥ η2, ∀t ∈ [ξ0 − δ, ξ0 + δ].(3.17)

Taking ξ∗, ξ
∗ ∈ {ξi} ∩ [ξ0 − δ, ξ0 + δ] and integrating from ξ∗ to ξ∗, we obtain

that

˙̄zn(ξ∗)− ˙̄zn(ξ
∗) =

∫ ξ∗

ξ∗

g(xn(t)) + e(t)

‖xn‖C1

dt.

Taking n→ ∞, by (3.16)-(3.17) we get

0 ≥ η2ǫ(ξ
∗ − ξ∗) > 0.

A contradiction. �

Now we come to show that (3.15) has only a trivial 2π periodic solution.
We assume by contradiction that (3.15) has a nontrivial 2π periodic solution
z0(t). In (3.15), if ż0(t̂) = 0, then by (1.8) it follows that

k2[z0(t)]
2 < [ż0(t)]

2 < (k + 1)2[z0(t)]
2.

It is easily seen that z0(t) ≡ 0 on [0, 2π], which is contrary to that ‖z0‖C1 = 1.
If ż0(t̂) 6= 0, without loss of generality, we suppose that t̂ = 0 and ż0(0) > 0.
Assume that z1(t) and z2(t) are solutions of the following equations, respec-
tively

(3.18) [ż(t)]2 − [ż(0)]2 = −p[z(t)]2, [ż(t)]2 − [ż(0)]2 = −q[z(t)]2

with

z0(0) = z1(0) = z2(0), ż1(0) ≤ ż0(0) ≤ ż2(0).

Then we have

z1(t) ≤ z0(t) ≤ z2(t), t ∈ [0, t1],

where t1 is the first zero point of z0(t) in (0, 2π]. Similarly, if z1(t) and z2(t)
are respectively solutions of (3.18) with

z0(t1) = z1(t1) = z2(t1), ż1(t1) ≤ ż0(t1) ≤ ż2(t1),

then we have

z1(t) ≤ z0(t) ≤ z2(t), t ∈ [t1, t2],

where t2 is the first zero point of z0 in (0, 2π]. Since ż0(t) has no zero accu-
mulation point in [0, 2π], it follows that (3.18) are equivalent to the following
equations

−z̈(t) = pz(t), −z̈(t) = qz(t)

respectively. Then there are positive constants ρ1, ρ2, ρ3, ρ4 such that

ρ1 sin(
√
qt) ≤ z0(t) ≤ ρ2 sin(

√
pt), 0 < t ≤ t1,

ρ3 sin(
√
q(t− t1)) ≤ z0(t) ≤ ρ4 sin(

√
p(t− t1)), t1 ≤ t ≤ t2,
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which implies that

π√
q
≤ t1 ≤ π√

p
,

2π√
q
≤ t2 ≤ 2π√

p
.

Hence, by virtue of the periodicity of z0(t), there exists some positive integer
m such that

2mπ

k + 1
<

2mπ√
q

≤ tm = 2π ≤ 2mπ√
p
<

2mπ

k
,

which implies that k < m < k+1, a contradiction. Therefore, (3.4) is impossible
and (3.3) holds. This completes the proof. �

Denote α = k2+(k+1)2

2 . Then the following problem
{

−ẍ = αx in [0, 2π],
x(0) = x(2π), ẋ(0) = ẋ(2π)

has the only trivial solution 0. Define

Φ(x) =
1

2

∫ 2π

0

[|ẋ|2 − αx2(t)]dt, ∀x ∈ H1
[0,2π]

and

N [x](y) =

∫ 2π

0

(α+ 1)xydx, ∀x, y ∈ H1
[0,2π].

Then Φ ∈ C2(H1
[0,2π]) and N is a compact linear operator from H1

[0,2π] to

H1
[0,2π]. Note that

[∇Φ(x)](y) =

∫ 2π

0

[ẋẏ + xy]dt−
∫ 2π

0

(α+ 1)xydx, ∀x, y ∈ H1
[0,2π].

Then we have

∇Φ = id−N.

Denote BR = {x ∈ H1
[0,2π] | ‖x‖ < R,R ∈ R

+}. It is easily seen that 0 is the

only critical point of Φ. Then ∇Φ(x) 6= 0 for all x ∈ ∂BR with R > 0. So ∇Φ
is well defined on BR. Denote deg and indexLS as Leray-Schauder degree and
index respectively. id denotes the identical mapping. We have the following
result.

Lemma 3.4. There exists R0 > 0 such that

deg(∇Φ, BR, 0) = (−1)k, ∀R ≥ R0.

Proof. From Theorem 2.8.1 in [25], it follows that

deg(∇Φ, BR, 0) = deg(id−N,B0, 0)

= indexLS(id−N, 0)

= (−1)β ,
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where

β =
∑

λj>1,λj∈σ(N)

βj , βj = dim∪∞
i=1ker(λj · id−N)i.

Hence we just need to compute indexLS(id−N, 0). If Nx = λx for some λ ∈ R

and x 6= 0, then we have

(Nx, y) =

∫ 2π

0

(α+ 1)xydt =

∫ 2π

0

λ[ẋẏ + xy]dt, ∀x, y ∈ H1
[0,2π],

which together with (1.1) implies that λ = α+1
n2+1 for some n ∈ Z

+. By k2 <

α < (k + 1)2, we can obtain that λ > 1 holds for all n ≤ k, which implies that
deg(∇Φ, BR, 0) = (−1)k for all R ≥ R0. This completes the proof. �

Apply above lemma, we can obtain the following result.

Lemma 3.5. Under the assumption of Theorem 1.2, there exists R1 > 0 such

that

deg(∇I, BR, 0) = (−1)k, ∀R ≥ R1.

Proof. Consider the following auxiliary problem
{

−ẍ = λf(t, x) + (1 − λ)αx ≡ fλ(t, x), a.e. t ∈ [0, 2π], λ ∈ [0, 1],
x(0) = x(2π), ẋ(0) = ẋ(2π).

(3.19)

Define

Iλ(x) =

∫ 2π

0

[
1

2
|ẋ(t)|2dt− Fλ(t, x)]dt,

where Fλ(t, x) =
∫ x

0 fλ(t, s)ds. By (1.4)-(1.5) and the definition of α, we can
see that the conditions of Lemma 3.3 hold, so there exists R1 > 0 large enough
such that, for all R ≥ R1, ∇Iλ |∂BR

(x) 6= 0 uniformly for λ ∈ [0, 1]. Then
by the homotopy invariance of the Leray-Schauder degree and Lemma 3.4 , we
obtain that

deg(∇I, BR, 0) = deg(∇I1, BR, 0)

= deg(∇I0, BR, 0)

= deg(∇Φ, BR, 0)

= (−1)k, ∀R ≥ R1. �

Proof of Theorem 1.2(i). Suppose that the set of all critical points of the func-
tional I is finite. If k is odd, then by Lemma 3.2 we have obtained two nontrivial
solutions. So we just prove the case of k is even. Choose ρ ∈ (0, ρ0), r ∈ (0, r1),
d ∈ (0, d1) and R ≥ R0 such that

Bρ ∩Br(x
+) = ∅, Bρ ∩Bd(x

−) = ∅, Br(x
+) ∩Bd(x

−) = ∅(3.20)

and

B̄ρ, B̄r(x
+), B̄d(x

−) ⊂ BR.
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Then from the additivity and excision properties of the Leray-Schauder degree,
we have

deg(∇I, BR, 0) = deg(∇I, Bρ, 0) + deg(∇I, Br(x
+), 0) + deg(∇I, Bd(x

−), 0)

+ deg(∇I, BR \ (Bρ ∪Br(x+) ∪Bd(x−)), 0).

In view of Lemmas 3.1, 3.2 and 3.5, we obtain

(−1)k = 1 + (−1) + (−1) + deg(∇I, BR \ (Bρ ∪Br(x+) ∪Bd(x−)), 0),

which together with the excision property of the Leray-Schauder degree implies
that

deg(∇I, BR \ (Bρ ∪Br(x+) ∪Bd(x−)), 0) = 1 + (−1)k.

Then if k is even, it follows that

deg(∇I, BR \ (Bρ ∪Br(x+) ∪Bd(x−)), 0) = 2.

Hence, by the existence property of the Leray-Schauder degree we can see that
there exists x∗ ∈ BR \ (Bρ ∪Br(x+) ∪Bd(x−)) such that ∇I(x∗) = 0, which
together with x+, x− gives the existence of at least three nontrivial solutions
of problem (1.1). This completes the proof. �

Proof of Theorem 1.2(ii). Firstly we shall show that the functional I satisfies
the hypotheses of the saddle point theorem. In fact, since f is continuous and
satisfies (1.7) it follows that I ∈ C1(H1

[0,2π],R). By (1.8), there exist ǫ1, ǫ2 > 0

satisfying

k2 < p− ǫ1 ≤ l(t) ≤ r(t) ≤ q + ǫ2 < (k + 1)2 a.e. t ∈ [0, 2π](3.21)

and aǫ1 , bǫ2 ∈ L1(0, 2π) such that

(p− ǫ1)s
2 − aǫ1(t) ≤ 2F (t, s) ≤ (q + ǫ2)s

2 + bǫ2(t) a.e. t ∈ [0, 2π], ∀s ∈ R.

Then, we have
∫ 2π

0

1

2
[|ẋ|2 − (q + ǫ2)x

2 + 2bǫ2(t)]dt

≤ I(x) ≤
∫ 2π

0

1

2
[|ẋ|2 − (p− ǫ1)x

2 + 2aǫ1(t)]dt.(3.22)

We claim that

I(w) → ∞ as ‖w‖ → ∞ for w ∈ W.(3.23)

Since for w ∈W ,
∫ 2π

0

ẇ2(t)dt ≥ (k + 1)2
∫ 2π

0

w2(t)dt,

we get

‖w‖2 =

∫ 2π

0

[|ẇ|2 + w2]dt ≤ (1 +
1

(k + 1)2
)

∫ 2π

0

ẇ2(t)dt.(3.24)
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Then, we can obtain by (3.22) and (3.24) that

I(w) ≥ 1

2
[1− q + ǫ2

(k + 1)2
]

∫ 2π

0

|ẇ|2dt− 2‖bǫ2‖L2(0,2π)

≥ δ1‖w‖2 − 2‖bǫ2‖L2(0,2π),

where δ1 = 1
2 [1−

q+ǫ2
(k+1)2 ]

1
1+ 1

(k+1)2
. By (3.21), δ1 > 0. Thus I satisfies (3.23).

Now we claim that

I(v) → −∞ as ‖v‖ → ∞ for v ∈ V.(3.25)

Write
V = V0 ⊕ V1,

where V0 = E(02), V1 = E(12) ⊕ E(22) ⊕ · · · ⊕ E(k2). Then we can write for
each v ∈ V as v = v0 + v1, where v0 ∈ V0, v1 ∈ V1. Note for v1 ∈ V1,

∫ 2π

0

v21(t)dt ≤
∫ 2π

0

v̇21(t)dt ≤ k2
∫ 2π

0

v21(t)dt.

We have

(1 +
1

k2
)

∫ 2π

0

v̇21(t)dt ≤ ‖v1‖2 =

∫ 2π

0

[v̇21(t) + v21(t)]dt ≤ 2

∫ 2π

0

v̇21(t)dt.(3.26)

Then we obtain by (3.21), (3.22) and (3.26) that, for v = v0 + v1 ∈ V ,

I(v) =

∫ 2π

0

1

2
[|v̇|2 − 1

2
(p− ǫ1)v

2 + aǫ1(t)]dt.

=
1

2

∫ 2π

0

|v̇1|2dt−
1

2
(p− ǫ1)[

∫ 2π

0

v21dt+

∫ 2π

0

v20dt] + ‖aǫ1‖L2(0,2π)

≤ 1

2
(1 − p− ǫ1

k2
)

∫ 2π

0

|v̇1|2dt−
1

2
(p− ǫ1)

∫ 2π

0

v20dt+ ‖aǫ1‖L2(0,2π)

≤ 1

4
(1 − p− ǫ1

k2
)‖v1‖2 −

1

2
(p− ǫ1)‖v0‖2 + ‖aǫ1‖L2(0,2π)

≤ −δ2‖v‖2 + ‖aǫ1‖L2(0,2π),

where δ2 = 1
4 (

p−ǫ1
k2 − 1) > 0. Hence, as ‖v‖ → ∞, I(v) → −∞.

By (1.7) and (1.8), we can show as in the proof of Theorem 1.1 that I satisfies
the (PS) condition. Consequently, the functional I satisfies the hypotheses of
the saddle point theorem. Hence, using Lemma 1.1 of [22], if I has finite critical
points which are all nondegenerate, then there exists a critical x∗ with Morse
index equal to dimV = k+1 ≥ 2. Moreover, using that 0 is a local minimum of
I and I(0) = 0, it follows that x∗ is nontrivial. On the other hand, by Lemma
3.2, I has a nontrivial nonnegative solution x+ and a nontrivial nonpositive
solution x−. Since x+ and x− are all nondegenerate and of mountain pass
type, by [19] it follows that x+ and x− are all of Morse index less that or equal
to 1. Then

x∗ 6= x+, x∗ 6= x−.
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Now, similar as the arguments in the proof of Theorem 1.2(i), we can take
τ > 0 small enough and ρ ∈ (0, ρ0), r ∈ (0, r1), d ∈ (0, d1) and R ≥ R0 such
that (3.20) holds and

Bτ (x
∗) ∩Br(x

+) = ∅, Bτ (x
∗) ∩Bd(x

−) = ∅, Bτ (x
∗) ∩Bρ = ∅

and

B̄τ (x
∗), B̄ρ, B̄r(x

+), B̄d(x
−) ⊂ BR.

By the additivity and excision properties of the Leray-Schauder degree, we have

deg(∇I, BR, 0) = deg(∇I, Bτ (x
∗), 0) + deg(∇I, Bρ, 0) + deg(∇I, Br(x

+), 0)

+ deg(∇I, Bd(x
−), 0)

+ deg(∇I, BR \ (Bτ (x∗) ∪Bρ ∪Br(x+) ∪Bd(x−)), 0).

Note that all the critical points of I are nongenerate, we can see that

| deg(∇I, Bτ (x
∗), 0)| = 1.

Then, using Lemmas 3.1, 3.2, 3.4 and the excision property of the Leray-
Schauder degree, we obtain

deg(∇I, BR \ (Bρ ∪Br(x+) ∪Bd(x−)), 0) 6= 0.

So, by the existence property of the Leray-Schauder degree it follows that there
exists x4 ∈ BR\(Bτ (x∗) ∪Bρ ∪Br(x+) ∪Bd(x−)) such that ∇I(x4) = 0. Thus
problem (1.1) has at least four nontrivial solutions: x+, x−, x∗, x4. �

Before proving Theorem 1.2(iii), we recall a global version of the Lyapunov-
Schmidt method.

Lemma 3.6 ([3]). Let H be a real separable Hilbert space. Let V and W be

closed subspaces of H such that H = V ⊕W . Assume that J ∈ C1(H,R). If

there are µ > 0 and τ > 1 such that

[∇J(v + w1)−∇J(v + w2)](w1 − w2) ≥ µ‖w1− w2‖τ for all v ∈ V,w1, w2∈W,
then we have the following.

(i) there exists ψ ∈ C(V,W ) such that

J(v + ψ(v)) = min
w∈W

J(v + w).

Moreover, ψ(x) is the unique member of W such that

[∇J(v + ψ(v)](w) = 0 for all w ∈ W ;

(ii) if we define J̄(v) = J(v + ψ(v)), then J̄ ∈ C1(V,R) and

[∇J̄(v)](v1) = [∇J(v + ψ(v)](v1) for all v, v1 ∈ V ;

(iii) An element v ∈ V is a critical point of J̄ if and only if v + ψ(v) is a

critical point of J ;
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(iv) Let dimX < ∞ and P be the projection onto V across W . Let S ⊂ V

and D ⊂ H be open bounded regions such that

{v + ψ(v) | v ∈ S} = D ∩ {v + ψ(v) | v ∈ V }.
If ∇J̄(v) 6= 0 for v ∈ ∂S, then

deg(∇J̄ , S, 0) = deg(∇J,D, 0);
(v) If x0 = v0 +w0 is a critical point of mountain pass type of J , then v0 is

a critical point of mountain pass type of J̄ .

Proof of Theorem 1.2(iii). Define the functional η(w) :W → R by

η(w) =

∫ 1

0

[|ẇ|2 − βw2]dt, ∀w ∈W.

Clearly, by
∫ 2π

0 |ẇ(t)|2dt ≥ (k + 1)2‖w‖22 for all w ∈W , we have

η(w) ≥
∫ 1

0

[(k + 1)2 − β]w2dt ≥ 0, ∀w ∈W.(3.27)

We claim that there exist µ,M > 0 such that

η(w) ≥ µ‖w‖2, ‖w‖ ≥M.(3.28)

Indeed, we assume, by contradiction, that (3.28) doesn’t hold. Then there

exists a sequence {wn} ⊂W with ‖wn‖ → ∞ such that η(wn)
‖wn‖2 → 0 as n→ ∞.

Let yn = wn

‖wn‖
. Then ‖yn‖ = 1. Passing, if necessary, to a subsequence we

assume that yn ⇀ y0 ∈ W weakly and yn → y0 in C[0, 2π]. By yn, y0 ∈ W it
follows that

0 ≤ η(y0) ≤ lim inf η(yn) = 0,(3.29)

which implies that

0 = η(y0) ≥
∫ 2π

0

[ẏ20 − (k + 1)2y20 ]dt ≥ 0.

Thus y0 is an eigenfunction corresponding to (k + 1)2. Note that (1.9), (3.27)
and (3.29) imply that y0 ≡ 0. A contradiction. Thus (3.28) holds. Now by the
mean value theorem and (1.9) it follows that

[∇I(v + w) −∇I(v + w1)](w − w1) ≥
∫ 2π

0

[|ẇ − ẇ1|2 − β(w − w1)
2]dt

≥ µ‖w − w1‖2.
Then by Lemma 3.6 there exists ψ : V →W such that

I(v + ψ(v)) = min
w∈W

I(v + w).

Moreover, ψ(v) is the unique element of W such that

[∇I(v + ψ(v))](w) = 0 for all w ∈ W.
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Define Ī : V → R by
Ī(v) = I(v + ψ(v)).

Then Ī is of class C1, and

[∇Ī(v)](v1) = [∇I(v + ψ(v))(x)](x1) for all v, v1 ∈ V.

By (3.25), I(v) → −∞ as ‖v‖ → ∞. Then in view of Ī(v) ≤ I(v), we can
obtain that

Ī(v) → −∞ as ‖v‖ → ∞.

Since V is of finite dimension, there exists v0 ∈ V such that

Ī(v0) = max
v∈V

I(v + ψ(v)).(3.30)

Then x0 = v0 + ψ(v0) is a critical point of I, i.e., ∇I(x0) = 0. Suppose that
v0 is an isolated critical point of Ī, so x0 is an isolated critical point of I. By
(3.30), v0 is a strictly local maximum of the functional Ī. Then there exists v̂
in some neighborhood S0 of v0 such that Ī(v̂) < Ī(v0), i.e.,

I(v̂ + ψ(v̂)) < I(v0 + ψ(v0)),

which means that x0 can’t be local minimum of the functional I. Thus x0 is
nontrivial. On the other hand, if we denote x+ = v+ +ψ(v+), then by Lemma
3.2 we can see that v+ is a critical point of mountain pass type of Ī, which
implies x0 6= x+. Similarly, x0 6= x−. Furthermore, denoting Bσ(x0) = {x ∈
H1

[0,2π] | ‖x− x0‖ ≤ σ}, by (3.30) there exists σ0 > 0 small such that

deg(∇Ī , Bσ(x0) |V , 0) = (−1)k for all 0 < σ ≤ σ0.(3.31)

Hence by Lemma 3.6 it follows that

deg(∇I, Bσ(x0), 0) = (−1)k for all 0 < σ ≤ σ0.(3.32)

Now similar arguments as in the proof of Theorem 1.2(ii) implies that there
exists at least a nontrivial critical point x4 of I that different from x0, x

+, x−.
This completes the proof. �
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