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UNIFORM MODERATE DEVIATION OF SAMPLE

QUANTILES AND ORDER STATISTICS

ShouFang Xu and Yu Miao

Abstract. In this article, we establish the Fp-uniform moderate devia-
tion principles of the sample quantiles and order statistics for a sequence
of independent and identically distributed samples.

1. Introduction

First, suppose that we have an independent and identically distributed sam-
ple of size n from a distribution function F (x) with a continuous probability
density function f(x). Let ξp denote the unique p-th quantile of F (x), i.e.,

ξp = inf{x : F (x) ≥ p}, p ∈ (0, 1).

Note that ξp satisfies
F (ξp−) ≤ p ≤ F (ξp).

Let us define the sample distribution function Fn(x) by

Fn(x) =
1

n

n∑

i=1

1{Xi≤x}, −∞ < x < ∞,

where 1A denotes the indicator function of the set A. The sample p-th quantile
is defined as the p-th quantile of the sample distribution function Fn(x) and

we denote it by ξ̂pn. Thus ξ̂pn can be represented as

ξ̂pn = inf{x : Fn(x) ≥ p}, p ∈ (0, 1).

The quantile not only can be used for describing some properties of random
variables, but also there are not the restrictions of moment conditions. As
a result, it is being widely employed in diverse problems in finance, such as,
quantile-hedging, optimal portfolio allocation, risk management, and so on.
In practice, the large sample theory which can give the asymptotic properties
of sample estimator is an important method to analyze statistical problems.
There are numerous literatures to study the sample quantiles. In [6], the strong
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consistency of the sample quantile is given, i.e., ξ̂pn
wp1−−→ ξp. In addition, if

F (x) possesses a continuous density function f(x) in a neighborhood of ξp and
f(ξp) > 0, then

n
1
2 f(ξp)(ξ̂pn − ξp)

[p(1− p)]
1
2

−→ N(0, 1) as n → ∞,

where N(0, 1) denotes the standard normal variable (see [6]). Suppose that
F (x) is twice differentiable at ξp, with F ′(ξp) = f(ξp) > 0, then Bahadur [1]
proved an elegant representation

ξ̂pn = ξp +
p− Fn(ξp)

f(ξp)
+ R̃n a.e.,

where R̃n = O(n− 3
4 (log n)

3
4 ) a.e., as n → ∞. Xu and Miao [7] obtained some

asymptotic properties of the deviation between the sample quantiles ξ̂np and
the quantile ξp under some weak conditions. Miao et al. [5] gave the almost
sure central limit theorem of the sample quantiles.

These results concentrated on the topic that the distribution function is
fixed. Recently, Zielinski [8] introduced the definition of Fp-uniformly strongly

consistent estimator and proved that ξ̂pn is an Fp-uniformly strongly consistent
estimator of ξp if and only if

inf
F∈Fp

min{p− F (ξp − ǫ), F (ξp + ǫ)− p} > 0 for everyǫ > 0,

where Fp denotes the family of all distribution functions with the unique p-
th quantile ξp. Motivated by these works, we want to consider the uniform
moderate deviation of the sample quantile. Under some assumptions for the

function family Fp, we show, in Section 2, that the sample quantile ξ̂pn satisfies
the moderate deviation principle.

Another nature estimator of the quantile is the order statistics. Let

X(1) ≤ X(2) ≤ · · · ≤ X(n)

denote the order statistics of the sample {X1, . . . , Xn} of observations on F (x).
For more detail about order statistics, one can refer to David [2] and Serfling

[6]. Assume that F (x) is twice differentiable at ξp, with F
′
(ξp) = f(ξp) > 0,

then as kn = np+o(
√
n(logn)δ) for some δ ≥ 1

2 , Bahadur [1] firstly established
the following representation for order statistics

X(k) = ξp +
kn/n− Fn(ξp)

f(ξp)
+Rn a.e.,

where
Rn = O(n−3/4(logn)(1/2)(δ+1)) a.e. as n → ∞.

With respect to moderate deviation of order statistics, Miao et al. [4] ob-
tained the asymptotic properties of the deviation between order statistics and
p-quantile, which included large and moderate deviation and the Bahadur as-
ymptotic efficiency.
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In general, from the Bahadur representation, some properties of sample
quantile and order statistics are usually consistent. However, in Section 3,
we will show that the moderate deviation principle for order statistics is differ-
ent from sample quantile (there are a little different in their assumptions and
representation of moderate deviation). In Section 4, we will give two examples
to show that these assumptions can be satisfied.

2. Fp-uniformly moderate deviation for sample quantiles

Theorem 2.1. For p ∈ (0, 1), let Fp be the family of all distribution functions

with the unique p-th quantile ξp. Let X1, . . . , Xn be independent identically

distributed random variables with distribution function F (x) ∈ Fp. Assume

that F (x) is twice differentiable at ξp, with F ′(ξp) = f(ξp) > 0. Let {bn} be a

positive sequence satisfying

bn → ∞ and
bn√
n
→ 0 as n → ∞.

(1) If there exists a constant γ > 0 such that

(2.1) sup
F∈Fp

sup
x∈(ξp,ξp+γ)

|F ′′
(x)|

(f(ξp))2
< ∞,

then we have

(2.2) lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
(ξ̂pn − ξp) ≥ r

)
= − r2

2p(1− p)
.

(2) If there exists a constant γ > 0 such that

(2.3) sup
F∈Fp

sup
x∈(ξp−γ,ξp)

|F ′′
(x)|

(f(ξp))2
< ∞,

then we have

(2.4) lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
(ξ̂pn − ξp) ≤ −r

)
= − r2

2p(1− p)
.

(3) In particular, if there exists a neighborhood of ξp, denoted by I, such that

(2.5) sup
F∈Fp

sup
x∈I

|F ′′
(x)|

(f(ξp))2
< ∞,

then for any r > 0, we have the following Fp-uniform moderate deviation,

lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
|ξ̂pn − ξp| ≥ r

)
= − r2

2p(1− p)
.

Remark 2.1. Here we need notice that the interval (ξp − γ, ξp), (ξp, ξp + γ) and
the neighborhood I maybe dependent on the distribution function F .

The following lemma will be applied in our proof.



1402 S. F. XU AND Y. MIAO

Lemma 2.1 ([6]). Let F be a distribution function. Assume that the function

F−1(t), 0 < t < 1, is nondecreasing and continuous, and satisfies

F−1(F (x)) ≤ x, x ∈ (−∞,+∞),

and

F (F−1(t)) ≥ t, t ∈ (0, 1).

Hence we have

F (x) ≥ t ⇔ x ≥ F−1(t).

Proof of Theorem 2.1. For any r > 0, we give the following result firstly

(2.6) lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
(ξ̂pn − ξp) ≥ r

)
= − r2

2p(1− p)
.

By Lemma 2.1, we have

(2.7)

PF

(√
nf(ξp)

bn
(ξ̂pn − ξp) ≥ r

)

= PF

(
1

n

n∑

i=1

I{Xi≤ bnr√
nf(ξp)

+ξp} ≤ p

)

= PF

(
n∑

i=1

I{Xi≥ bnr√
nf(ξp)

+ξp} ≥ n(1− p)

)

= PF

(
n∑

i=1

Wni ≥ bn
√
nδn

)
,

where

(2.8) Wni = I{Xi≥ bnr√
nf(ξp)

+ξp} − EF I{Xi≥ bnr√
nf(ξp)

+ξp}

and

(2.9) δn =
n(1− p)− nEF I{Xi≥ bnr√

nf(ξp)
+ξp}

bn
√
n

.

It is easy to check

(2.10) EF I{Xi≥ bnr√
nf(ξp)

+ξp} = 1− F

(
bnr√
nf(ξp)

+ ξp

)

and by utilizing Taylor’s formula we have

(2.11) F

(
bnr√
nf(ξp)

+ ξp

)
= F (ξp)+F

′

(ξp)
bnr√
nf(ξp)

+
1

2
F

′′

(η)

(
rbn√
nf(ξp)

)2

,

where η ∈
(
ξp, ξp +

bnr√
nf(ξp)

)
. Thus from the condition (2.1), we get

(2.12) F

(
bnr√
nf(ξp)

+ ξp

)
= p+

bnr√
n
+Rn,
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where Rn = o
(

bn√
n

)
is independent of F . From (2.9), (2.10), (2.12), we have

(2.13) δn =
n(1− p)− n(1− p) + bn

√
nr + o (bn

√
n)

bn
√
n

= r + o(1).

Furthermore, since

(2.14) Wni = I{Xi≥ξp+
bnr√
nf(ξp)

} − 1 + F

(
ξp +

bnr√
nf(ξp)

)
,

it is easy to have

(2.15) EF (Wni) = 0, V arF (Wni) = p(1− p) +O(bn/
√
n).

Through the above discussions, the equation (2.7) can be rewritten as follows

PF

(
ξ̂pn ≥ ξp +

bnr√
nf(ξp)

)
= PF

(
1

bn
√
n

n∑

i=1

Wni ≥ r + o(1)

)
.

Next, we prove the following Cramér functional holds: for any λ ∈ R,

(2.16) lim
n→∞

1

b2n
log sup

F∈Fp

EF exp

{
λbn√
n

n∑

i=1

Wni

}
=

λ2p(1− p)

2
.

By Triangle inequality, we have
(2.17) ∣∣∣∣∣

1

b2n
log sup

F∈Fp

EF exp

{
λbn√
n

n∑

i=1

Wni

}
− λ2p(1− p)

2

∣∣∣∣∣

≤ n

b2n

∣∣∣∣∣log sup
F∈Fp

EF exp

{
λbn√
n
Wn1

}
−
(

sup
F∈Fp

EF exp

{
λbn√
n
Wn1

}
− 1

)∣∣∣∣∣

+
n

b2n

∣∣∣∣∣

(
sup

F∈Fp

EF exp

{
λbn√
n
Wn1

}
− 1

)
− λ2p(1− p)b2n

2n

∣∣∣∣∣ .

By the elementary inequality:
∣∣∣∣e

x − 1− x− 1

2
x2

∣∣∣∣ ≤ |x|3e|x|, ∀ x ∈ R,

we have

n

b2n

∣∣∣∣∣

(
sup

F∈Fp

EF exp

{
λbn√
n
Wn1

}
− 1

)
− λ2p(1− p)b2n

2n

∣∣∣∣∣(2.18)

≤ n

b2n
sup

F∈Fp

∣∣∣∣∣EF

(
exp

{
λbn√
n
Wn1

}
− 1− 1

2

(
λbn√
n
Wn1

)2
)∣∣∣∣∣

+
n

b2n
sup

F∈Fp

∣∣∣∣∣
1

2
EF

(
λbn√
n
Wn1

)2

− λ2p(1− p)b2n
2n

∣∣∣∣∣
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≤ n

b2n
sup

F∈Fp

EF

(∣∣∣∣
λbn√
n
Wn1

∣∣∣∣
3

exp

{
λbn√
n
|Wn1|

})

+
n

b2n
sup

F∈Fp

∣∣∣∣∣
1

2
EF

(
λbn√
n
Wn1

)2

− λ2p(1− p)b2n
2n

∣∣∣∣∣ .

Since Wn1 is a bounded random variable, then from (2.15) and (2.18), we have

(2.19)
n

b2n

∣∣∣∣∣

(
sup

F∈Fp

EF exp

{
λbn√
n
Wn1

}
− 1

)
− λ2p(1− p)b2n

2n

∣∣∣∣∣→ 0 as n → ∞.

Furthermore, by the fact that Wn1 is a bounded random variable again, for
enough large n, we have

∣∣∣∣∣ supF∈Fp

EF exp

{
λbn√
n
Wn1

}
− 1

∣∣∣∣∣ ≤
1

2
.

From this estimate and the following inequalities:

| log(1 + x)− x| ≤ 2x2 for all |x| ≤ 1

2

and

|ex − 1− x| ≤ x2e|x| for all x ∈ R,

we get
(2.20)

n

b2n

∣∣∣∣∣log sup
F∈Fp

EF exp

{
λbn√
n
Wn1

}
−
(

sup
F∈Fp

EF exp

{
λbn√
n
Wn1

}
− 1

)∣∣∣∣∣

≤ 2n

b2n

(
sup

F∈Fp

EF exp

{
λbn√
n
Wn1

}
− 1

)2

≤ 2n

b2n
sup

F∈Fp

∣∣∣∣EF exp

{
λbn√
n
Wn1

}
− 1

∣∣∣∣
2

≤ 2n

b2n
sup

F∈Fp

(
EF

((
λbn√
n
Wn1

)2

exp

{
λbn√
n
|Wn1|

}))2

→ 0.

Hence from (2.17), (2.19) and (2.20), the limit (2.16) holds. By the Gärtner-
Ellis theorem (see [3]), we have

(2.21) lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
(ξ̂pn − ξp) ≥ r

)
= − r2

2p(1− p)
.
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Likewise, by Lemma 2.1, we have

(2.22)

PF

(√
nf(ξp)

bn
(ξ̂pn − ξp) ≤ −r

)

= PF

(
1

n

n∑

i=1

I{Xi≤ξp− bnr√
nf(ξp)

} ≥ p

)

= PF

(
n∑

i=1

Vni ≥ bn
√
nδ

′

n

)
,

where

(2.23) Vni = I{Xi≤ξp− bnr√
nf(ξp)

} − EF I{Xi≤ξp− bnr√
nf(ξp)

}

and

δ
′

n =
np− nEI{Xi≤ξp− bnr√

nf(ξp)
}

bn
√
n

.

By the same proof as the term PF

(
ξ̂pn − ξp ≥ bnr√

nf(ξp)

)
, it follows that

lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
(ξ̂pn − ξp) ≤ −r

)
= − r2

2p(1− p)
.

This limit and (2.21) yield the desired results. �

3. Fp-uniformly moderate deviation for order statistics

In this section, we obtain the Fp-uniformly moderate deviation principle of
order statistics by utilizing the method to deal with the sample quantile.

Theorem 3.1. For p ∈ (0, 1), let Fp be the family of all distribution functions

with the unique p-th quantile ξp. Let X1, . . . , Xn be independent identically

distributed random variables with distribution function F (x) ∈ Fp. Assume

that F (x) is twice differentiable at ξp, with F ′(ξp) = f(ξp) > 0. Let {bn} be a

positive sequence satisfying

bn → ∞ and
bn√
n
→ 0 as n → ∞.

Then for any r > 0, we have

(1) as kn = n(1− p) + o(bn
√
n), if there exists a constant γ > 0 such that

(3.1) sup
F∈Fp

sup
x∈(ξp,ξp+γ)

|F ′′
(x)|

(f(ξp))2
< ∞,

then

(3.2) lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
(X(kn) − ξp) ≥ r

)
= − r2

2p(1− p)
,
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(2) as kn = np+ o(bn
√
n), if there exists a constant γ > 0 such that

(3.3) sup
F∈Fp

sup
x∈(ξp−γ,ξp)

|F ′′
(x)|

(f(ξp))2
< ∞,

then

(3.4) lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
(X(kn) − ξp) ≤ −r

)
= − r2

2p(1− p)
.

Remark 3.1. From the proof of Theorem 3.1, we know that the two assumptions
kn = n(1− p) + o(bn

√
n), kn = np+ o(bn

√
n) are technical conditions in some

sense, so the following standard moderate deviation can not be obtained.

(3.5) lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
|X(kn) − ξp| ≥ r

)
= − r2

2p(1− p)
.

In particular, if p = 1
2 , then (3.5) holds, i.e.,

(3.6) lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξ 1

2
)

bn
|X(kn) − ξ 1

2
| ≥ r

)
= −2r2.

Corollary 3.1. Under the assumptions of Theorem 3.1, for p > 1
2 , if there

exists a neighborhood of ξp, denoted by I, such that

(3.7) sup
F∈Fp

sup
x∈I

|F ′′
(x)|

(f(ξp))2
< ∞,

then for any r > 0, we have

(3.8) lim
n→∞

1

b2n
log sup

F∈Fp

PF

(√
nf(ξp)

bn
|X(kn) − ξp| ≥ r

)
= − r2

2p(1− p)
,

where kn satisfies kn = np+ o(bn
√
n).

Proof of Theorem 3.1. Firstly we give the proof of (3.2). It is easy to see that

(3.9)

PF

(√
nf(ξp)

bn
(X(kn) − ξp) ≥ r

)

= PF

(
X(kn) ≥

bnr√
nf(ξp)

+ ξp

)

= PF

(
n∑

i=1

I{Xi≥ bnr√
nf(ξp)

+ξp} ≥ kn

)

= PF

(
n∑

i=1

Wni ≥ bn
√
ntn

)
,

where the sequence {Wni, 1 ≤ i ≤ n} is defined in (2.8) and

tn =
kn − nEF I{Xi≥ bnr√

nf(ξp)
+ξp}

bn
√
n

= r + o(1)
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as kn = n(1− p) + o(bn
√
n). Hence by the same proof of Theorem 2.1, we can

obtain the desired result. Next we show (3.4). Similarly, we have

(3.10)

PF

(√
nf(ξp)

bn
(X(kn) − ξp) ≤ −r

)

= PF

(
n∑

i=1

I{Xi≤ξp− bnr√
nf(ξp)

} ≥ kn

)

= PF

(
n∑

i=1

Vni ≥ bn
√
nt

′

n

)
,

where the sequence {Vni, 1 ≤ i ≤ n} is defined in (2.23) and

t
′

n =
kn − nEF I{Xi≤ξp− bnr√

nf(ξp)
}

bn
√
n

= r + o(1),

as kn = np + o(bn
√
n). Then by the similar proof of Theorem 2.1, we can

obtain the relation (3.4). So the proof of the theorem is completed. �

Proof of Corollary 3.1. As the same as the proof of Theorem 3.1, it follows
that if p > 1

2 , then tn = O(
√
n/bn). For this case, the probability

PF

(
n∑

i=1

Wni ≥ bn
√
ntn

)

could be neglected in the sense of moderate deviation. Hence, the remainder
of the proof is easy. �

4. Further discussions

In this section, we discuss the conditions (2.1), (2.3) and (2.5) by two exam-
ples.

Example 4.1. Let X1, . . . , Xn be a sequence of independent identically dis-
tributed random variables with following distribution function

Fλ(x) =

{
1− e−λx, x > 0,

0, x ≤ 0,

where λ > 0. For p ∈ (0, 1), let ξp be the p-th quantile of the sample distribution
Fλ(·), then

ξp = − 1

λ
log(1− p).

By some simple calculating, we can see that there can exist a positive constant
γ such that

sup
x∈(ξp,ξp+γ)

|F ′′

λ (x)|
(f(ξp))2

= sup
x∈(ξp,ξp+γ)

e−λx

(1− p)2
=

e−λξp

(1 − p)2
=

1

1− p
,
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and

sup
x∈(ξp−γ,ξp)

|F ′′

λ (x)|
(f(ξp))2

= sup
x∈(ξp−γ,ξp)

e−λx

(1 − p)2
=

e−λ(ξp−γ)

(1− p)2
=

1

1− p
eλγ .

So if and only if Fp = {Fλ(·), λ ∈ (a, b) ⊂ (0,∞)}, the conditions (2.1) and
(2.3) hold. If we take γ > 0, Fp = {Fλ(·), λ ∈ (a, b) ⊂ (0,∞)} and I =
(ξp − γ, ξp + γ), then

sup
Fλ∈Fp

sup
x∈I

|F ′′

λ (x)|
(f(ξp))2

= sup
λ∈(a,b)

1

1− p
eλγ < ∞

which implies the condition (2.5).

Example 4.2. Let X1, . . . , Xn be a sequence of independent identically dis-
tributed normal random variables N(a, σ2), where a ∈ R, σ2 > 0. Let p = 1

2 ,

then ξ 1
2
= a. Furthermore, we have fa,σ(ξ 1

2
) = 1√

2πσ
and

|F ′′

a,σ(x)|
(fa,σ(ξ 1

2
))2

=

√
2π|x− a|

σ
e−

(x−a)2

2σ2 ,

where Fa,σ(x) and fa,σ(x) denote the distribution function and density function
of the normal random variable N(a, σ2). If we take the function set

F 1
2
= {Fa,σ(x); a ∈ R, σ2 > c},

where c is a positive constant, then it is easy to see that there exists a neigh-
borhood I (for example, I = (a− γ, a+ γ) for any γ > 0) such that

sup
Fa,σ∈F 1

2

sup
x∈I

|F ′′

a,σ(x)|
(fa,σ(ξ 1

2
))2

< ∞.
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