DOI QR코드

DOI QR Code

Analytical Approximation of the Relaxation Time Spectrum of Monodisperse Linear Polymer Melts

단분산성 고분자 용융체의 완화시간분포의 해석적인 근사계산법

  • Choi, Joong Hwan (Department of Polymer and Fiber Examination, Korean Intellectual Property Office)
  • 최중환 (특허청 고분자섬유심사과)
  • Received : 2014.07.03
  • Accepted : 2014.08.10
  • Published : 2014.08.31

Abstract

The relaxation time spectrum is a versatile parameter to calculate various polymer viscoelastic properties, such as the relaxation modulus (G(t)), dynamic modulus (G'(${\omega}$)) and loss modulus (G"(${\omega}$)). However, it cannot be measured experimentally. This study calculated the relaxation time spectrum using a calculation method based on Fusso-Kirkwood's theoretical research and using the empirical loss modulus formula. The calculated relaxation time spectrum and Rouse's model could describe the viscoelastic behavior of monodisperse polystyrene successfully. This analytical approximation of the relaxation time spectrum differed from experimental data in the intermediate region between the reputation and Rouse region. This may have resulted from a limitation of the molecular theory in the Rouse region.

Keywords

References

  1. M. Baumgaertel and H. H. Winter, "Determination of Discrete Relaxation and Retardation Time Spectra from Dynamic Mechanical Data", Rheol Acta, 1989, 28, 511-519. https://doi.org/10.1007/BF01332922
  2. J. Honerkamp and J. Weese, "Determination of the Relaxation Spectrum by a Regularization Method", Macromolecules, 1989, 22, 4372-4377. https://doi.org/10.1021/ma00201a036
  3. J. Honerkamp and J. Weese, "A Nonlinear Regularization Method for the Calculation of Relaxation Spectra", Rheol Acta, 1993, 32, 65-73. https://doi.org/10.1007/BF00396678
  4. K. S. Cho and G. W. Park, "Fixed-Point Iteration for Relaxation Spectrum from Dynamic Mechanical Data", J Rheol, 2013, 57, 647-678. https://doi.org/10.1122/1.4789786
  5. K. S. Cho, "Power Series Approximations of Dynamic Moduli and Relaxation Spectrum", J Rheol, 2013, 57, 679-697. https://doi.org/10.1122/1.4789787
  6. R. M. Fuosso and J. G. Kirkwood, "Electrical Properties of Solids. VIII. Dipole Moments in Polyvinyl Chloride-Diphenyl Systems", J Am Chem Soc, 1941, 63, 385-394. https://doi.org/10.1021/ja01847a013
  7. A. R. Davies and R. S. Anderssen, "Sampling Localization in Determining the Relaxation Spectrum", J Non-Newtonian Fluid Mech, 1997, 73, 163-179. https://doi.org/10.1016/S0377-0257(97)00056-6
  8. M. Doi and S. F. Edwards, "The Theory of Polymer Dynamics", Clarendon Press, Oxford, 1986.
  9. C. Pattamaprom, R. G. Larson, and T. J. Van Dyke, "Quantitative Predictions of Linear Viscoelastic Rheological Properties of Entangled Polymers", Rheol Acta, 2000, 39, 517-531. https://doi.org/10.1007/s003970000104
  10. M. Rubinstein and R. H. Colby, "Polymer Physics", Oxford University Press, 2003.
  11. H. Watanabe, "Viscoelasticity and Dynamics of Entangled Polymers", Prog Polym Sci, 1999, 24, 1253-1403. https://doi.org/10.1016/S0079-6700(99)00029-5
  12. M. Baumgaertel, A. Schausberger, and H. H. Winter, "The Relaxation of Polymers with Linear Flexible Chains of Uniform Length", Rheol Acta, 1990, 29, 400-408. https://doi.org/10.1007/BF01376790
  13. A. Schausberger, G. Schindlauer, and H. Janeschitz-Kriegl, "Linear Elastico-Viscous Properties of Molten Standard Polystyrenes. I. Presentation of Complex Moduli; Role of Short Range Structural Parameters," Rheol Acta, 1985, 24, 220-227. https://doi.org/10.1007/BF01332600