DOI QR코드

DOI QR Code

Evaluation of Haloacetic Acid Formation Potential in Drinking Water Treatment Process by Fraction Technique

정수처리 공정에서 용존 유기물질 분류에 의한 haloacetic acid 생성능 평가

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 황영도 (부산광역시 상수도사업본부 수질연구소) ;
  • 류동춘 (부산광역시 상수도사업본부 수질연구소) ;
  • 정철우 (울산 테크노파크 정책기획단) ;
  • 이건 (동아대학교 환경공학과) ;
  • 손형식 (울산 테크노파크 정책기획단)
  • Received : 2014.07.04
  • Accepted : 2014.09.17
  • Published : 2014.09.30

Abstract

A comprehensive fractionation technique was applied to a set of water samples obtained along drinking water treatment process with ozonation and biological activated carbon (BAC) process to obtain detailed profiles of dissolved organic matter (DOM) and to evaluate the haloacetic acid (HAA) formation potentials of these DOM fractions. The results indicated that coagulation-sedimentation-sand filtration treatment showed limited ability to remove hydrophilic fraction (28%), while removal of hydrophobic and transphilic fraction were 57% and 40%, respectively. And ozonation and BAC treatment showed limited ability to remove hydrophobic fractions (6%), while removal of hydrophilic and transphilic fractions were 25% and 18%. The haloacetic acid formation potential (HAAFP)/dissolved organic carbon (DOC) of hydrophilic fraction was the highest along the treatment train and HAAFP/DOC of hydrophilic fraction was higher than hydrophobic and transphilic fraction as 23%~30%, because of better removal for hydrophobic fraction both in concentration and reactivity.

Keywords

References

  1. Baghoth, S. A., Sharma, S. K., Amy, G. L., 2011, Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC, Water Res., 45, 797-809. https://doi.org/10.1016/j.watres.2010.09.005
  2. Black, K. E., Berube, P. R., 2014, Rate and extent NOM removal during oxidation and biofiltration, Water Res., 52, 40-50. https://doi.org/10.1016/j.watres.2013.12.017
  3. Chen, C., Zhang, X., Zhu, L., Liu, J., He, W., Han, H., 2008, Disinfection by-products and their precursors in a water treatment plant in North China; seasonal changes and fraction analysis, Sci. Total Environ., 397, 140-147. https://doi.org/10.1016/j.scitotenv.2008.02.032
  4. Goslan, E. H., Jefferson, B., Jarvis, P. R., Parson, S. A., 2008, Aquatic natural organic matter (NOM): will it form THMs or HAAs?, Proceedings of IWA World Water Congress, September 10-14, Beijing, China.
  5. Hong, H. C., Huang, F. Q., Wang, F. Y., Ding, L. X., Lin, H. J., Liang, Y., 2013, Properties of sediment NOM collected from a drinking water reservoir in South China, and its association with THMs and HAAs formation, J. Hydrology, 476, 274-279. https://doi.org/10.1016/j.jhydrol.2012.10.040
  6. Hua, G., Reckhow, D. A., 2007, Characterization of disinfection by-product precursors based on hydrophobicity and molecular size, Environ. Sci. Technol., 41, 3309-3315. https://doi.org/10.1021/es062178c
  7. Imai, A., Matsunaga, K., Nagai, T., 2003, Trihalomethane formation potential of dissolved organic matter in a shallow eutrophic lake, Water Res., 37(17), 4284-4294. https://doi.org/10.1016/S0043-1354(03)00310-5
  8. Kim, M. H., Yu, M. J., 2005, Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane, Environ. Res., 97, 116-123. https://doi.org/10.1016/j.envres.2004.07.012
  9. Kristiana, I., Charrois, J. W. A., Hrudey, S. E., 2012, Research overview, regulatory history and current worldwide status of DBP regulations and guidelines, In Disinfection By-Products and Human Health, Hrudey, S. E. and Charrois, J. W. A. (Eds), International Water Association publishing, London, pp. 11-39.
  10. Lee, B. G., Son, H. J., Roh, J. S., Hwang, Y. D., Jung, C. W., Kang, L. S., 2005, Effect of fractionated organic matter on membrane fouling, J. Kor. Soc. Environ. Eng., 27(12), 1321-1326.
  11. Lee, W., Westerhoff, P., Croue, J. P., 2007, Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane, Environ. Sci. Technol., 41, 5485-5490. https://doi.org/10.1021/es070411g
  12. Leenheer, J. A., 2004, Comprehensive assessment of precursors, diagenesis, and reactivity to water treatment of dissolved and colloidal organic matter, Water Sci. Technol.: Water Suppl., 4(4), 1-9.
  13. Liang, L., Singer, P. C., 2003, Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water, Environ. Sci. Technol., 37(13), 2920-2928. https://doi.org/10.1021/es026230q
  14. Lu, J., Zhang, T., Ma, J., Chen, Z., 2009, Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water, J. Hazard. Mater., 162, 140-145. https://doi.org/10.1016/j.jhazmat.2008.05.058
  15. Marhaba, T. F., Van, D., 2000, The variation of mass and disinfection byproduct formation potential of dissolved organic matter fractions along a conventional surface water treatment train, J. Hazard. Mater., 74, 133-147. https://doi.org/10.1016/S0304-3894(99)00190-9
  16. Noh, J. S., Son, H. J., Park, E. J., Hwang, Y. D., Sin, P. S., Kang, L. S., Joo, G. J., 2002, Changes in characteristics of natural organic matter and DBPs precursor removal by advanced water treatment processes, J. Kor. Soc. Environ. Eng., 24(12), 2075-2087.
  17. Son, H. J., Jung, C. W., Kang, L. S., 2004, The relationship between disinfection by-product formation and characteristics of natural organic matter in the raw water for drinking water, J. Kor. Soc. Environ. Eng., 26(4), 457-466.
  18. Son, H. J., Jung, J. M., Choi, J. T., Son, H. S., Jang, S. H., 2013, Evaluation of natural organic matter treatability and disinfection by-products formation potential using model compounds, J. Environ. Sci. Intl., 22(9), 1153-1160. https://doi.org/10.5322/JESI.2013.22.9.1153
  19. Swietlik, J., Dabrowska, A., Raczyk-Stanislawiak, U., Nawrocki, J., 2004, Reactivity of natural organic matter fractions with chlorine dioxide and ozone, Water Res., 38, 547-558. https://doi.org/10.1016/j.watres.2003.10.034
  20. US EPA, 1995, National Exposure Research Laboratory, Office of Research Development, Method 552.2, Cincinnati, Ohio.
  21. Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005, Fate of endocrine-disruptor, pharmaceutical and personal care product chemicals during simulated drinking water treatment processes, Environ. Sci. Technol., 39, 6649-6663. https://doi.org/10.1021/es0484799
  22. Xing, L., Murshed, M. F., Lo, T., Fabris, R., Chow, C. W. K., van Leeuwen, J., Drikas, M., Wang, D., 2012, Characterization of organic matter in alum treated drinking water using high performance liquid chromatography and resin fractionation, Chemical Eng. J., 192, 186-191. https://doi.org/10.1016/j.cej.2012.03.050
  23. Yang, X., Shang, C., 2004, Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia and bromide, Environ. Sci. Technol., 38(19), 4995-5001. https://doi.org/10.1021/es049580g