DOI QR코드

DOI QR Code

동북아시아 지역에서의 최근 12년간 (2001-2012) MODIS 토지피복 분류 자료의 특성

Characteristics of MODIS land-cover data sets over Northeast Asia for the recent 12 years(2001-2012)

  • Park, Ji-Yeol (Department of Atmospheric Sciences, Kongju National University) ;
  • Suh, Myoung-Seok (Department of Atmospheric Sciences, Kongju National University)
  • 투고 : 2014.06.19
  • 심사 : 2014.08.20
  • 발행 : 2014.08.31

초록

본 연구에서는 12년(2001-2012)간의 MODerate Resolution Imaging Spectroradiometer (MODIS) 토지피복 자료를 이용하여 동북아시아 지역에 대한 토지피복 유형별 통계적 점유율과 연변동을 조사하였다. MODIS 토지피복 자료의 공간해상도는 500 m이며 토지피복 유형의 수는 17개이다. 12년 평균에서 농지(36.96%), 초지(23.14%) 그리고 혼합림(22.97%) 3가지 유형이 분석 영역의 80% 이상을 점유하고 있는 것으로 나타났고, 그 외 농지와 자연 식생의 혼합유형(6.09%), 낙엽활엽수림(4.26%), 도시(2.46%) 그리고 사바나(1.54%) 유형이 점유하고 있는 것으로 나타났다. 비록 자료의 사용 기간이 짧지만 단순회귀분석에서 상록침엽수림, 낙엽활엽수림, 혼합림은 유의수준 5%에서 점유율이 증가하는 경향을 보였으나 사바나 유형은 유의수준 5%에서 감소하는 경향을 보였다. 토지피복 유형이 매년 다르게 분류되는 화소의 비율이 10% 이상이며 토지피복 유형별 점유율의 연변동은 농지(1.41%), 혼합림(0.82%), 초지(0.73%)에서 가장 두드러지게 나타났다. 또한, 12년 동안 토지피복 유형이 1개로만 분류된 화소의 비율은 단지 57%이며, 나머지 화소들에서는 2개 이상으로 분류되었으며 최대 9개 유형으로 분류된 화소도 존재했다. 공간적으로 균질하게 1개 유형만 분포하고 있는 중국 동부와 북서부 지역을 제외한 전체 지역에서 토지피복 유형이 연도별도 다르게 분류되고 있다. 따라서 토지피복 변화에 소요되는 시간적 규모를 고려할 때 동북아시아 지역에서 MODIS 토지피복 자료를 이용할 시 주의가 필요하다.

In this study, we investigated the statistical occupations and interannual variations of land cover types over Northeast Asian region using the 12 years (2001-2012) MODerate Resolution Imaging Spectroradiometer(MODIS) land cover data sets. The spatial resolution and land cover types of MODIS land cover data sets are 500 m and 17, respectively. The 12-year average shows that more than 80% of the analysis region is covered by only 3 types of land cover, cropland (36.96%), grasslands (23.14%) and mixed forests (22.97%). Whereas, only minor portion is covered by cropland/natural vegetation mosaics (6.09%), deciduous broadleaf forests (4.26%), urban and built-up (2.46%) and savannas (1.54%). Although sampling period is small, the regression analysis showed that the occupations of evergreen needleleaf forests, deciduous broadleaf forests and mixed forests are increasing but the occupations of woody savannas and savannas are decreasing. In general, the pixels where the land cover types are classified differently with year are amount to more than 10%. And the interannual variations in the occupations of land cover types are most prominent in cropland (1.41%), mixed forests (0.82%) and grasslands (0.73%). In addition, the percentage of pixels classified as 1 type for 12 years is only 57% and the other pixels are classified as more than 2 types, even 9 types. The annual changes in the classification of land cover types are mainly occurred at the almost entire region, except for the eastern and northwestern parts of China, where the single type of land cover located. When we take into consider the time scale needed for the land cover changes, the results indicate that the MODIS land cover data sets over the Northeast Asian region should be used with caution.

키워드

참고문헌

  1. Bartholome, E. and A.S. Belward, 2005. GLC2000: A new approach to global land cover mapping from earth observation data, International Journal of Remote Sensing, 26(9): 1959-1977. https://doi.org/10.1080/01431160412331291297
  2. Bontemps, S., P. Defourny, E.V. Bogaert, O. Arino, V. Kalogirou, and J.R. Perez, 2011. GLOBCOVER 2009-Products description and validation report, European Space Agency.
  3. Brown, D.G., B.C. Pijanowski, and J.D. Duh, 2000. Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA, Journal of Environmental Management, 59(4): 247-263. https://doi.org/10.1006/jema.2000.0369
  4. Chase, T.N., R.A. Pielke Sr, T.G.F. Kittel, R.R. Nemani, and S.W. Running, 2000. Simulated impacts of historical land cover changes on global climate in northern winter, Climate Dynamics, 16(2-3): 93-105. https://doi.org/10.1007/s003820050007
  5. Foody, G.M., 2002. Status of land cover classification accuracy assessment, Remote Sensing of Environment, 80(1): 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4
  6. Friedl, M.A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sensing of Environment, 114(1): 168-182. https://doi.org/10.1016/j.rse.2009.08.016
  7. Han, S.H., 2008. Land cover classification of multifunctional administrative city for hazard mitigation precaution, Journal of Korean Society of Hazard Mitigation, 8(5): 77-83.
  8. Herold, M., P. Mayaux, C.E. Woodcock, A. Baccini, and C. Schmullius, 2008. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets, Remote Sensing of Environment, 112(5): 2538-2556. https://doi.org/10.1016/j.rse.2007.11.013
  9. Jeong, S.K., C.H. Park, and S.W. Kim, 2006. Land cover classification of the Korean Peninsula using linear spectral mixture analysis of MODIS multi-temporal data, Korean Journal of Remote Sensing, 22(6): 553-563. https://doi.org/10.7780/kjrs.2006.22.6.553
  10. Kang, J.H., M.S. Suh, and C.H. Kwak, 2007. A comparison of the land cover data sets over Asian region: USGS, IGBP and UMd, Atmosphere, 17(2): 159-169.
  11. Kang, J.H., M.S. Suh, and C.H. Kwak, 2009. Classification of land cover over the Korean Peninsula using MODIS data, Atmosphere, 19(2): 169-182.
  12. Kang, J.H., M.S. Suh, and C.H. Kwak, 2010. Land cover classification over East Asian region using recent MODIS NDVI data (2006-2008), Atmosphere, 20(4): 415-426.
  13. Lepers, E., E.F. Lambin, A.C. Janetos, R. DeFRIES, F. Achard, N. Ramankutty, and R.J. Scholes, 2005. A synthesis of information on rapid land-cover change for the period 1981-2000, BioScience, 55(2): 115-124. https://doi.org/10.1641/0006-3568(2005)055[0115:ASOIOR]2.0.CO;2
  14. Loveland, T.R., B.C. Reed, J.F. Brown, D.O. Ohlen, Z. Zhu, L. Yang, and J.W. Merchant, 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, International Journal of Remote Sensing, 21(6): 1303-1330. https://doi.org/10.1080/014311600210191
  15. McCallum, I., M. Obersteiner, S. Nilson, and A. Shivdenko, 2006. A spatial comparison of four satellite derived 1 km global land cover datasets, International Journal of Applied Earth Observation and Geoinformation, 8(4): 246-255. https://doi.org/10.1016/j.jag.2005.12.002
  16. Park, Y.Y. and K.S. Han, 2006. Ecoclimatic map over North-East Asia using SPOT/VEGETATION 10-day synthesis data, Korean Journal of Agricultural and Forest Meteorology, 8(2): 86-96.
  17. Pettorelli, N., J.O. Vik, A. Mysterud, J.M. Gaillard, C.J. Tucker, and N.C. Stenseth, 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change, Trends in ecology and evolution, 20(9): 503-510. https://doi.org/10.1016/j.tree.2005.05.011
  18. Ryu, J.H., K.S. Han, K.J. Pi, and M.J. Lee, 2013. Analysis of land cover change around desert areas of East Asia, Korean Journal of Remote Sensing, 29(1): 105-114. https://doi.org/10.7780/kjrs.2013.29.1.10
  19. Sellers, P.J., and Coauthors, 1995. Remote sensing of the land surface for studies of global change: Models-algorithms-experiments, Remote Sensing of Environment, 51(1): 3-26. https://doi.org/10.1016/0034-4257(94)00061-Q
  20. Seong, J.C., 2000. Characteristics and application of large-area multi-temporal remote sensing data, Korean Journal of Remote Sensing, 16(1): 1-11. https://doi.org/10.7780/kjrs.2000.16.1.1
  21. Suh, M.S., C.H. Kwak, H.S. Kim, and M.K. Kim, 2001. Classification of land cover over the Korean Peninsula using polar orbiting meteorological satellite data, Journal of the Korean Earth Science Society, 22(2): 138-146.
  22. Suh, M.S., J.R. Lee, J.H. Kang, D.K. Lee and M.H. Ahn, 2005. On the relationship between seasonal change of vegetation and climate elements in East Asia, Journal of Korean Meteorological Society, 41(4): 557-570.
  23. Tchuente, A.T.K., J.L. Roujean, and S.M. De Jong, 2011. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale, International Journal of Applied Earth Observation and Geoinformation, 13(2): 207-219. https://doi.org/10.1016/j.jag.2010.11.005
  24. Verburg, P.H., K. Neumann, and L. Nol, 2011. Challenges in using land use and land cover data for global change studies, Global Change Biology, 17(2): 974-989. https://doi.org/10.1111/j.1365-2486.2010.02307.x
  25. Wang, Q. and J.D. Tenhunen, 2004. Vegetation mapping with multitemporal NDVI in North Eastern China transect (NECT), International Journal of Applied Earth Observation and Geoinformation, 6(1): 17-31. https://doi.org/10.1016/j.jag.2004.07.002

피인용 문헌

  1. Improvement of MODIS land cover classification over the Asia-Oceania region vol.31, pp.2, 2015, https://doi.org/10.7780/kjrs.2015.31.2.1
  2. 동아시아 사막 면적의 경년변화분석 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.1.3
  3. Land Cover Classification Map of Northeast Asia Using GOCI Data vol.35, pp.1, 2019, https://doi.org/10.7780/kjrs.2019.35.1.6