DOI QR코드

DOI QR Code

Characteristics of Infrared and Water Vapor Imagery for the Heavy Rainfall Occurred in the Korean Peninsula

한반도에서 발생하였던 집중호우 시 적외 및 수증기 영상의 특성

  • Seong, Min-Gyu (Department of Atmospheric Sciences, Kong-Ju National University) ;
  • Suh, Myoung-Seok (Department of Atmospheric Sciences, Kong-Ju National University)
  • Received : 2014.04.28
  • Accepted : 2014.05.27
  • Published : 2014.08.31

Abstract

In this study, we analyzed the spatio-temporal variations of satellite imagery for the two heavy rainfall cases (21 September, 2010, 9 August, 2011) occurred in the Korean Peninsula. In general, the possibility of strong convection can be increased when the region with plenty of moisture at the lower layer overlapped with the boundary between dark and bright area in the water vapor imagery. And the merging of convective cells caused by the difference in the moving velocities of two cells resulted in the intensification of convective activity and rainfall intensity. The rainfall intensity is more closely linked with the minimum cloud top temperature than the mean cloud top temperature. Also the spatio-temporal variations of rainfall intensity are impacted by the existence of merging processes. The merging can be predicted by the animation of satellite imagery but earlier detection of convective cells is almost impossible by using the infrared and water vapor imagery.

본 연구에서는 최근 발생한 집중호우 사례들 중 예보가 어려워 피해가 컸던 두 사례(2010년 9월 21일, 2011년 8월 9일)에 대해 적외영상과 수증기영상의 시 공간적인 변화 특성을 분석하였다. 두 사례에서 한반도지역에 집중호우를 유발한 대류 세포들은 적외영상에서 하층운이 광범위하게 분포하고 수증기 영상에서는 명역과 암역의 경계(boundary)에서 생성되는 특징을 보였다. 또한 대류 세포들의 이동속도 차에 의한 총 5번의 병합과정 중 4번의 병합과정에서 대류 세포들의 병합 후 대류 세포는 더욱 발달되었으며 강수 강도도 급격하게 강화되었다. 대류시스템에서의 강우강도 변화는 휘도온도의 평균보다 최소 휘도온도의 시간적 변화와 밀접하게 관련된 것으로 판단되며 대류 세포들의 병합도 집중호우의 강도 변화에 영향을 주는 주요 인자로 생각된다. 대류 세포들의 병합은 영상동화를 통해 어느 정도 예측이 가능하지만 대류 세포의 탐지는 적외 및 수증기 영상 모두에서 일정 강도 이상 발달한 상태에서만 탐지가 가능하였다.

Keywords

References

  1. Adler, R.F., M.J. Markus, and D.D. Fenn, 1985. Detection of severe Midwest thunderstorms using geosynchronous satellite data, Monthly Weather Review, 113: 769-781. https://doi.org/10.1175/1520-0493(1985)113<0769:DOSMTU>2.0.CO;2
  2. Cintineo, J.L., M.J. Pavolonis, J.M. Sieglaff, and A.K. Heidinger, 2013. Evolution of severe and nonsevere convection inferred from GOESderived cloud properties, Journal of Applied Meteorology and Climatology, 52: 2009-2023. https://doi.org/10.1175/JAMC-D-12-0330.1
  3. IPCC, 2007. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt., M. Tignor, and H. L. Miller(eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: 966 pp.
  4. Kim, D.-R. and T.-Y. Kwon, 2011. Characteristics of satellite brightness temperature and rainfall intensity over the life cycle of convective cellscase study, Atmosphere, 21(3): 273-284 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2011.21.3.273
  5. Kim, G.-S. and J.-P. Kim, 2011. Characterization of the variability of summer extreme precipitation according to the local features, Journal of the Korean Society of Civil Engineers, 31(3B): 129-146 (in Korean with English abstract). https://doi.org/10.12652/KSCE.2011.31.2B.129
  6. Kim, I.-H., T.-Y. Kwon, and D.-R. Kim, 2012. MTSAT satellite image features on the severe storm events in Yeongdong region, Atmosphere, 22(1): 29-45 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.1.029
  7. Korea Meteorological Administration, 2009. http://www.kma.go.kr
  8. Kwon, T.-Y. and J.-S. Lee, 2013. Satellite image analysis of convective cell in the Chuseok heavy rain of 21 September 2010, Korean Journal of Remote Sensing, 29(4): 423-441 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.4.8
  9. Lee, K.-J., K.-Y. Heo, A.-S. Suh, J.-S. Park, and K.-J. Ha, 2010. Application of images and data of satellite to a conceptual model for heavy rainfall analysis, Atmosphere, 20(2): 131-151 (in Korean with English abstract).
  10. National Emergency Management Agency, 2010. Annual disaster report 2010, Korea: National Emergency Management Agency, Publication No. 11-1660000-000032-10.
  11. National Emergency Management Agency, 2011. Annual disaster report 2011, Korea: National Emergency Management Agency, Publication No. 11-1660000-000032-10.
  12. Reynolds, D.W., 1980. Observations of damaging hailstorms from geosynchronous satellite digital data, Monthly Weather Review, 108: 337-348. https://doi.org/10.1175/1520-0493(1980)108<0337:OODHFG>2.0.CO;2
  13. Santurette, P. and C.C. Georgiev, 2007. Water vapour imagery analysis in 7.3${\mu}$/6.2${\mu}$ for diagnosing thermo-dynamic context of intense convection, Proc. of Joint 2007 EUMETSAT Meteorological Satellite Conference and the 15th AMS Satellite Meteorology & Oceanography Conference, Amsterdam, The Netherlands, 24-28 September 2007.
  14. Sieglaff, J.M., L.M. Crone, and W.F. Feltz, 2010. Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends, Journal of Applied Meteorology and Climatology, 50: 110-126.
  15. Sohn, B.-J., G.-H. Ryu, H.-J. Song, and M.-L. Ou, 2013. Characteristic features of warm-type rain producing heavy rainfall over the Korean peninsula inferred from TRMM measurements, Monthly Weather Review, 141: 3873-3888. https://doi.org/10.1175/MWR-D-13-00075.1
  16. Sun, J. and T.-Y. Lee, 2002. A numerical study of an intense quasi-stationary convection band over the Korean peninsula, Journal of the Meteorological Society of Japan, 80(5): 1221-1245. https://doi.org/10.2151/jmsj.80.1221
  17. Tian, S.C., 1991. Effect of merging of the convective cloud clusters on occurrence of heavy rainfall, Advances in Atmosphere Sciences, 8(4): 499-504. https://doi.org/10.1007/BF02919272