DOI QR코드

DOI QR Code

알킬렌디아미노알킬-비스-포스폰산 유도체에 의해 처리된 중밀도섬유판의 연소성

Combustive Properties of Medium Density Fibreboard (MDF) Specimens Treated with Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives

  • 진의 (강원대학교 소방방재연구센터) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University)
  • 투고 : 2014.07.19
  • 심사 : 2014.08.14
  • 발행 : 2014.08.31

초록

이 연구에서는 피페라지노메틸-비스-포스폰산(PIPEABP), 메틸피페라지노메틸-비스-포스폰산(MPIPEABP), N,N-디메틸 렌디아미노메틸-비스-포스폰산(MDEDAP), 비스-디알킬아미노알킬 포스폰산(DMDAP)으로 처리된 중밀도섬유판(MDF)의 연소성을 시험하였다. 15 wt%의 알킬렌디아미노알킬-비스-포스폰산 수용액으로 MDF에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 그의 연소성을 시험하였다. 그 결과, 알킬렌디아미노알킬-비스-포스폰산 및 비스-디메틸아미노메틸 포스피닉산(DMDAP)로 처리한 시험편은 연소속도 감소에 의하여 무처리한 시험편에 비해 최대질량감소율 도달시간($TMLR_{peak}$) = (340475) s을 지연시켰다. 게다가 $CO_{mean}$은 (0.0883~0.0963) kg/kg으로서 무처리한 시험편(0.0612 kg/kg)보다 높게 측정되었다. 특별히 화학 첨가제 수용액으로 처리한 시험편의 비소화면적($SEA_{mean}=5m^2/kg{\sim}21.5m^2/kg$)은 무처리한 시험편의 비소화면적($-426.8m^2/kg$) 보다 높았다. 따라서 알킬렌디아미노알킬-비스-포스폰산 및 비스-디알킬아미노알킬 포스폰산으로 처리된 MDF의 시험편은 무처리한 MDF 시험편의 난연성을 향상시킨 것으로 판단된다. 그러나 연기발생량 감소에는 부정적인 영향을 주었다.

This study was performed to test the combustive properties of Medium Density Fibreboard (MDF) specimens treated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylenediaminomethyl-bis-phosphonic acid (MDEDAP). MDF Plates were painted in three times with 15 wt% solution of the alkylenediaminoalkyl-bis-phosphonic acids at the room temperature, respectively. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the specimens treated with chemicals showed the later time to peak mass loss rate ($TMLR_{peak}$) = (340475) s than that of virgin plate by reducing the burning rate. In adition, the specimens treated with chemicals showed the higher $CO_{mean}$ production (0.0883~0.0963) kg/kg than that of virgin plate. Especially, the specimens treated with chemicals showed the higher mean smoke extinction area ($SEA_{mean}$) ($5m^2/kg{\sim}21.5m^2/kg$) than that of virgin plate. Thus, It is supposed that the combustion-retardation properties were improved by the partial due to the treated alkylenediaminoalkyl-bis-phosphonic acids in the virgin MDF Plate. However, It gave a negative effect on smoke reduction.

키워드

참고문헌

  1. O. Grexa, E. Horvathova, O. Besinova and P. Lehocky, "Falme Retardant Treated Plyood", Polym. Degrad. Stab., Vol. 64, pp. 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  2. Y. J. Chung, "Comparison of Combustion Proprties of Native Wood Species Used for Fire Pots in Korea", J. Ind. Eng. Chem., Vol. 16, pp. 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  3. Article 43 of Building Code, Article 61 of Enforcement Ordinance, "The Internal Finish Material of the Building" (2004).
  4. Article 12 of Firefighting Basic Law, Article 20 of Decree, "The Subject Merchandise Flame and Flame Performance Standard" (2005).
  5. P. W. Lee and J. H. Kwon, "Effects of the Treated Chemicals on Fire Retardancy of Fire Retardant Treated Particleboards", Mogjae-Gonghak, Vol. 11, pp. 16-22 (1983)
  6. T. S. Mcknight, "The hygroscopicity of Wood Treated With Fire-Retarding Compounds", Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
  7. J. C. Middleton, S. M. Dragoner and F. T. Winters, Jr. "An Evaluation of Borates and Other Inorganic Salts as Fire Retardants for Wood Products", Fore. Prod. J., Vol. 15, pp. 463-467 (1965).
  8. S. L. Levan and J. E. Winandy, "Effects of Fire Retardant Treatments on Wood Strength: A Review", Wood Fiber Sci., Vol. 22, pp. 113-131 (1990).
  9. R. Stevens, S. E. Daan, R. Bezemer and A. Kranenbarg, "The Strucure-Activity Relationship of Retardant Phosphorus Compounds in Wood", Polym. Degrad. Stab., Vol. 91, pp. 832-841 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  10. Y. J. Chung, Y. H. Kim and S. B. Kim, "Flame Retardant Properties of Polyurethane Produced by the Addition of Phosphorous Containing Polyurethane Oligomers (II)", J. Ind. Eng., Vol. 15, pp. 888-893 (2009). https://doi.org/10.1016/j.jiec.2009.09.018
  11. Y. J. Chung, "Flame Retardancy of Veneers Treated by Ammonium Salts", J. Korean Ind. Eng. Chem., Vol. 18, pp. 251-255 (2007).
  12. M. L. Hardy, "Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBDPO, OBDPO, PeBDPO and HBCD", Polym. Degrad. Stab., Vol. 64, pp. 545-556 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  13. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", In: S. J. Grayson and D. A. Smith (eds.), Elsevier Appied Science Publisher, London, UK (1986).
  14. M. M. Hirschler, "Thermal Decomposition and Chemical Composition", 239, American Chemical Society Symposium Series 797 (2001).
  15. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever (2002).
  16. C. H. Lee, C. W. Lee and J. W. Kim, "Organic Phosphorus- Nitrogen Compounds, Manufacturing Method and Compositions of Flame Retardants Containing Organic Phosphorus-Nitrogen Compounds", Korean Patent 10-2011-0034978 (2011).
  17. Y. J. Chung and E. Jin, "Synthesis of Alkylenediaminoalkyl- Bis-Phosphonic Acid Derivatives, J. of Korean Oil Chemist's Soc., Vol. 30, pp. 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  18. Y. J. Chung and E. Jin, "Synthesis of Dialkylaminoalkyl Phosphonic Acid and Bis (dialkylaminoalkyl) Phosphinic Acid Derivatives", Appl. Chem. Eng., Vol. 23, pp. 383-387 (2012).
  19. Cischem Com, "Flame Retardants", Chischem. Com. CO., Ltd. (2009).
  20. E. Jin and Y. J. Chung, "Combustive Characteristics of Pinus Rigida Treated With Bis-(dialkylaminoalkyl) Phosphinic Acid Derivatives", Appl. Chem. Eng., Vol. 24, pp. 633-638 (2013). https://doi.org/10.14478/ace.2013.1087
  21. W. T. Simpso, "Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, Wood Handbook- Wood as an Engineering Material", pp. 1-21, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. (1987).
  22. M. Delichatsios, B. Paroz and A. Bhargava, "Flammability Properties for Charring Materials", Fire Safety Journal, Vol. 38, No. 3, pp. 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  23. M. J. Spearpoint, "Predicting the Ignition and Burning Rate of Wood in the Cone Calorimeter Using an Intergral Model", NIST GCR 99-775, pp. 30-46. National Institute of Standards and Technology, Gaithersburg, U.S.A. (1999).
  24. M. Hagen, J. Hereid, M. A. Delichtsios, J. Zhang and D. Bakirtzis, "Flammability Assesment of Fire-Retarded Nordic Spruce Wood Using Thermogravimetric Analyses and Cone Calorimettry", Fire Safety J., Vol. 44, pp. 1053-1069 (2009). https://doi.org/10.1016/j.firesaf.2009.07.004
  25. V. Babrauskas, "Heat Release Rate", Section 3, The SFPE Handbook of Fire Protection Engineering, 4th ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  26. A. P. Mourituz, Z. Mathys and A. G. Gibson, "Heat Release of Polymer Composites in Fire", Composites: Part A, Vol. 38, No. 7, pp. 1040-1054 (2005).
  27. S. Ishihara, "Smoke and Toxic Gases Produced During Fire", Wood Research and Technical Notes, Vol. 16, No. 5, pp. 49-62 (1981).