DOI QR코드

DOI QR Code

A Study on Combustion Patterns of Flammable Liquids by Contained Oil Test

담유 실험에 의한 인화성 액체의 연소 패턴 해석에 관한 연구

  • Joe, Hi-Su (Dept. of Fire Safety Engineering, Jeonju University) ;
  • Choi, Chung-Seog (Dept. of Fire Safety Engineering, Jeonju University)
  • 조희수 (전주대학교 소방안전공학과) ;
  • 최충석 (전주대학교 소방안전공학과)
  • Received : 2014.04.28
  • Accepted : 2014.08.14
  • Published : 2014.08.31

Abstract

The purpose of this study is to analyze combustion patterns by filling a specific container with a flammable liquid and performing combustion tests in a divided space. The container used for the test is made of plastic, 20 mm in depth and 150 mm in width. After the liquid was ignited, its combustion process was photographed using a digital camera and video camera. It was found that in the case of benzene, the flame reached its peak at the fastest speed about 60 s while in the case of alcohol, the flame reached its peak at the lowest speed about 360 s, which is approximately six times slower than the benzene. In most cases, when the flame reached its peak, smoke generated was dark as the plastic container and flammable liquid were combusted simultaneously. After completion of the combustion, it was possible to sample oil vapor from all flammable liquids excluding soybean oil as a result of the examination of oil vapor using a crime investigation tube. That is, it can be seen that there is significant difference in flame propagation speed, pattern, etc., depending on the combustible substances.

본 연구는 인화성 액체를 특정 용기에 담유하고 구획된 공간에서 연소 실험을 실시하여 연소 패턴을 분석하는 데 있다. 담유 실험에 사용된 용기는 깊이 20 mm, 넓이 150 mm의 플라스틱이다. 화염이 착화되어 연소되는 과정은 디지털카메라(digital camera) 및 비디오카메라(video camera)를 이용하여 확보하였다. 화염이 최성기에 도달하는 속도는 벤젠이 가장 빠르고 약 60 s이다. 반면 가장 늦게 것은 알코올이었으며 약 360.0 s로 6배 정도 차이가 있었다. 화염이 최성기에 도달하였을 때 플라스틱 용기와 인화성 액체가 동시에 연소됨에 따라 연기는 대부분 검정색이었다. 연소가 완료된 후유증 검지관(crime investigation tube)을 이용하여 유증을 조사한 결과 대두유를 제외한 모든 인화성 물질에서 유증 채취가 가능했다. 즉, 연소 물질의 종류에 따라 화재의 확산 속도 및 패턴 등에 큰 차이가 있다는 것을 알 수 있었다.

Keywords

References

  1. C. S. Choi, H. W. Kim, K. S. Lee, Y. S. Lim, C. H. Lee and J. H. Chung, "Electrical Fire Engineering", Honghwa Technology Publishing Co., pp. 171-173 (2004).
  2. S. H. Lee, "Theory and Business of Fire Investigation", Honghwa Technology Publishing Co., pp. 75-80 (2009).
  3. M. G. Zabetakis, "Flammability Characteristics of Combustible Gases and Vapours", U. S. Department of Mines, Bulletin 627 (1965).
  4. P. Villagran, V. Lenck-Santini, P. Save and E. Poucet, "Properties of Place Cell Firing after Damage to the Visual Cortex", The European Journal of Neuroscience, pp. 771-776 (2002).
  5. J. S. Kim, S. W. Baek and C. R. Kaplan, "Effect of Radiation on Diffusion Flame Behaviour Over a Combustible Solid", Combustion Science and Technology, p. 133 (1993).
  6. W. J. Sheu, H. C. Shia and N. C. Liou, "Ignition Length of Laminar Combustible Pipe Flows", Combustion Science and Technology, pp. 451-460 (1998).
  7. Korean Dangerous Center, "Dangerous Handbook", Daewoong Publishing Co. (1993).
  8. J. H. Hyun, "Qualitative Analysis of Some Kinds of Petroleum (Thinner, Gasoline, Kerosene, and Diesel Oil) by Gas Chromatography", Analysis Science & Technology, pp. 512-518 (2006).
  9. H. S. Joe, "Study on the Flame Propagation Speed of Flammable Liquids and Patterns of Damage by Fire", Jeonju University, pp. 22,48-63 (2013).
  10. C. S. Choi and H. S. Joe, "Flame Propagation Rate of Flammable Liquid by Oil Flow Test Experiment of Division Fire", Proceeding of 2014 Spring Annual Conference (KIFSE), Daegu EXCO, pp. 145-146 (2014).
  11. N. Kakae, T. Tsuchihashi, Y. Tanaka, Y. Ohmiya and K. Harada, "Influence of Combustible Dimension and Density on Heat Release Rate Part 2 Relation between Combustible Dimension, Maximum Heat Release Rate and Duration of Maximum Burning", Fire Science and Technology, pp. 491-496 (2007).