DOI QR코드

DOI QR Code

열선에 의한 파이프라인내의 수소/공기 혼합기의 착화온도

Ignition Temperature of Hydrogen/Air Mixture by Hot Wire in Pipeline

  • 김동준 (경일대학교 소방방재학과)
  • 투고 : 2014.02.17
  • 심사 : 2014.08.14
  • 발행 : 2014.08.31

초록

본 연구에서는 수소 네트워크 설비의 안전성 확보를 위한 기초연구로 파이프라인 내부에서의 수소/공기혼합기의 착화온도를 조사하였다. 착화원으로는 순간적으로 고온이 된 후 일정한 온도를 유지하는 열선을 사용하였다. 수소농도와 열선의 온도를 변화시키며 실험한 결과, 수소농도의 감소에 따라 최저착화온도도 감소하는 경향이 확인되었다. 착화를 위한 열선의 최저온도는 수소 농도 10 vol.%에서 가장 낮음이 확인되었다. 이러한 경향은 열선주변의 부력에 의한 영향이라 생각된다. 또한, 혼합기의 습도는 착화온도, 화염온도에 큰 영향을 미치는 않는 것이 확인되었다.

In order to improve safety for hydrogen network infrastructure, the ignition temperature by hot wire was investigated for different hydrogen compositions in pipelines. The result shows that minimum temperature for ignition decreased with decreasing hydrogen composition. The minimum temperature was confirmed at a hydrogen composition of approximately 10 vol.%. The one of the reasons is supposed that buoyancy force should generate the convection of gas mixture. It was also found that humidity had a little effect on ignition temperature, flame temperature.

키워드

참고문헌

  1. D. H. Kim, C. H. Jeong and C. H. Han, "Economic Efficiency of Using Existing Pipe Line in Hydrogen Network", Korean Chem. Eng. Res., Vol. 46. No. 3, pp. 598-603 (2008).
  2. K. O'Hashi, M. Hirata and W. C. Leighty, "Proposal for a Northeast Asian Hydrogen Highway: From a Naturalgas- based to a Hydrogen-based Society", 16th world hydrogen energy conference, Lyon (2006).
  3. Wietschel, "The Future of Hydrogen - Opportunities and Challenges", Int. J. Hydrogen Energy, Vol. 34, pp. 615-627 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.014
  4. M. Konda, N. Shah and N. P. Brandon, "Optimal Transition Towards a Large-scale Hydrogen Infrastructure for the Transport Sector: The Case for the Netherlands", Int. J. Hydrogen Energy, Vol. 36, pp. 4619-4635 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.104
  5. G. A. Papadakis, "Major Hazard Pipelines: A Comparative Study of Onshore Transmission Accidents", J. Loss Prevention in the Process Industries, Vol.12, pp. 91-107 (1999). https://doi.org/10.1016/S0950-4230(98)00048-5
  6. M. H. Alencar and A. T. Almeida, "Assigning Priorities to Actions in a Pipeline Transporting Hydrogen Based on a Multicriteria Decision Model", Vol. 35, pp. 3610-3619 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.122
  7. P. H. C. Lins and A. T. de Almeida, "Multidimensional Risk Analysis of Hydrogen Pipelines", International Journal of Hydrogen Energy, Vol. 37, pp. 13545-13554 (2012). https://doi.org/10.1016/j.ijhydene.2012.06.078
  8. http://hysut.or.jp/business/2011/02/index.html.
  9. A. Daniel and Y. Jo, "The Hazard and Risks of Hydrogen", J. of Loss Prevention in the Process Industries, Vol. 20, No.1, pp. 58-164 (2007).
  10. O. Kwon and G. Faeth, "Flame/Stretch Interactions of Premixed Hydrogen-fueled Flames", Combustion and Flame, Vol. 124, pp. 590-5610 (2001). https://doi.org/10.1016/S0010-2180(00)00229-7
  11. R. Ono, M. Nifuku, S. Fujiwara, S. Horiguchi and T. Oda, "Minimum Ignition Energy of Hydrogen-air Mixture: Effects of Humidity and Spark Duration", J. of Electrostatics, Vol. 65, pp. 87-93 (2007). https://doi.org/10.1016/j.elstat.2006.07.004
  12. T. Mogi, D. J. Kim, H. Shiina and S. Horiguchi, "Selfignition and Explosion During Discharge of High-pressure Hydrogen", J. of Loss Prevention, Vol. 21, pp. 199-204 (2008). https://doi.org/10.1016/j.jlp.2007.06.008
  13. T. Imamura, T. Mogi and Y. Wada, "Control of the Ignition Possibility of Hydrogen by Electrostatic Discharge at a Ventilation Duct Outlet", International Journal of Hydrogen Energy, Vol. 34, pp. 2815-2823 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.028
  14. D. Srivastava, M. Weinrotter, K. Iskra, A. Ayarwal and E. Wintner, "Characterisation of Laser Ignition in Hydrogenair Mixtures in a Combustion Bomb", International Journal of Hydrogen Energy, Vol. 34, pp. 2475-2482 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.117
  15. R. K. Kumar, "Ignition of Hydrogen-Oxygen-Diluent Mixtures Adjacent to a Hot, Nonreactive Surface", Combustion and Flame, Vol. 75, pp. 197-215 (1989). https://doi.org/10.1016/0010-2180(89)90097-7
  16. D. Kiu and R. MacFarlane, "Laminar Burning Velocities of Hydrogen-air and Hydrogen-air-steam Flames", Combustion and Flame, Vol. 49, pp. 59-71 (1983). https://doi.org/10.1016/0010-2180(83)90151-7
  17. H. Kim, H. Enomoto, H. Kato, M. Tsue and M. Kono, "The Effect of Catalytic Reaction on Hot Surface Ignition", Transactions of the Japan Society of Mechanical Engineers, Vol. 63, pp. 2539-2544 (1997) (in Japanese). https://doi.org/10.1299/kikaib.63.611_2539
  18. D. J. Kim, "Measurements on the Propagation Characteristics of the Hydrogen Flame by Ultra Fine Thermocouple", Journal of Korean Institute of Gas, Vol. 14, No. 3, pp. 8-13 (2010).
  19. H. H. Potter and H. H. Wills, "The Electrical Resistance of Ferromagnetics", Proc. Phys. Soc., Vol. 49, pp. 671-678 (1937).
  20. A. Gaydon and H. Wolfhard, "Flames - Their Structure, Radiation and Temperature", 4th Edition, Chapmanand Hall, p. 320 (1979).
  21. http://cearun.grc.nasa.gov, (accessed : 31 - Semptember - 2012) (online).