DOI QR코드

DOI QR Code

Interface Behavior of Concrete Infilled Steel Tube Composite Beam

콘크리트충전 강관 합성보의 계면거동

  • 이용학 (건국대학교 토목공학과) ;
  • 이타 (쌍용건설(주) 토목기술팀) ;
  • 정종현 (건국대학교 토목공학과) ;
  • 김형주 (건국대학교 토목공학과) ;
  • 박건태 (마이다스IT 해석기술개발팀)
  • Received : 2014.03.11
  • Accepted : 2014.05.15
  • Published : 2014.09.30

Abstract

Interface behavior and confining effects of concrete-infilled steel tube (CFT) composite beam were investigate based on the experimental observations and numerical analyses. For this purpose, laboratory four-points bending tests were performed for the two test specimens of 1,000mm long CFT composite beams. The test beams were made of ${\phi}110mm$ and 4.5mm thick steel tube and 10mm thick steel web and bottom flange. Therefore, concrete infilled in steel tube was in compression through the entire cross section due to the web and bottom flange. Two end section conditions, with end section cap and without end section cap, were considered in experiments to monitor the relative slip displacement at ends and induce confining effects at center. In numerical aspects, finite element analysis considering steel-concrete interface behavior was performed and compared to the experimental results.

본 논문은 강-콘크리트 슬립실험으로 결정된 계면 계수값을 휨 하중을 받는 콘크리트 충전강관 합성보 실험의 결과예측에 적용하여 콘크리트 충전강관 합성보의 계면거동과 구속효과를 규명하였다. 원형단면의 콘크리트가 전단면압축을 받도록 하기 위해서 콘크리트 충전강관에 웨브와 플랜지를 추가한 콘크리트 충전강관 합성보를 사용하여 휨 거동실험을 수행하였다. 콘크리트가 전단면 압축을 받는 단부가 개방된 콘크리트 충전합성강관의 경우에는 구속효과에 의해 약 16%의 강도증진효과를 확인하였으며, 단부를 폐쇄하여 구속효과가 커진 콘크리트충전 합성강관의 경우에는 35% 정도의 큰 강도증진효과가 발생하는 것을 확인하였다. 실험과 수치해석을 통해 얻은 이러한 결과는 콘크리트 충전강관을 이용한 교량의 상부 거더나 아치리브에 대한 단면 결정에 적용되는 적용성을 갖는다.

Keywords

References

  1. Ahamad, S. H., and Shah, S. P. (1982), Stress-Strain Curves of Concrete Confined by Spiral Reinforcement, ACI Journal, 79(46), 484-490.
  2. B. Lakshmi, N. E. Shanmugam (2002), Nonlinear Analysis of In-Filled Steel-Concrete Composite Columns, Journal of structural Engineering, 128(7), 922-933. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(922)
  3. Chiew, S. P., Dong, Y. X., and Sho, C. K. (1996), Concrete-Steel Plate Interface Characteristics for Composite Construction, Computing Developments in Civil and Structural Engineering, 35-40.
  4. Hong Mei, Panos D. Kiousis, Mohammad R. Ehsani, and Hamid Saadatmanesh (2001), Confinement Effects on High-Strength Concrete, ACI Structural Journal, 98(4), 548-553.
  5. Hsuan-Teh Hu, Chiung-Shiann Huang, Ming-Hsien Wu, Yih-Min Wu (2003), Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect, Journal of Structural Engineering, ASCE, 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  6. Jerome F. Hajjar, Brett C. Gourley (1997), A Cyclic Nonlinear Model for Concrete-Filled Tubes. I: Formulation, Journal of structural Engineering, 736-744.
  7. Jerome F. Hajjar, Brett C. Gourley, Matthew C. Olson (1997), A Cyclic Nonlinear Model for Concrete-Filled Tubes. II: Verification, Journal of structural Engineering, 123(6), 745-754. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(745)
  8. Kang, B. S., Ju, Y. T., Lee, Y. H. (2006), Flexural Behaviors of PSC Composite Girders in Negative Moment Regions, Journal of the Korea Concrete Institute, 18(2), 169-176 (in Korean). https://doi.org/10.4334/JKCI.2006.18.2.169
  9. Kang, B. S., Sung, W. J., Chang, Y. G., Lee, Y. H. (2006), Flexural Behaviors of PSC Composite Girders in Positive Moment Regions, Journal of the Korea Concrete Institute, 18(3), 313-320 (in Korean). https://doi.org/10.4334/JKCI.2006.18.3.313
  10. Kent A. Harries, Gayatri Kharel (2002), Behavior and Modeling of Concrete subject to Variable Confining Pressure, ACI Material Journal, 99(2), 180-189.
  11. Lee, T., Ju, Y. T., Lee, Y. H. (2009), Determination of Steel-Concrete Interface Parameters Bonded and Unbonded Slip Tests, Journal of the Korea Concrete Institute, 21(6), 773-780 (in Korean). https://doi.org/10.4334/JKCI.2009.21.6.773
  12. Lee, T., Ju, Y. T., Lee, Y. H. (2009), Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interace Parameters, Journal of the Korea Concrete Institute, 21(6), 781-788 (in Korean). https://doi.org/10.4334/JKCI.2009.21.6.781
  13. Lee, Y. H. (1999), Development of Four Parameter Failure Envelope for Three-Dimensional Constitutive Modeling of Concrete, KSCE, 19(I-1) 79-88 (in Korean).
  14. Mander, J. B., Priestly, J. N., and Park, R. (1988), Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Engineering, ASCE, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  15. Mohamed Elchalakani, Xiao-Ling Zhao, Raphael Grzebieta (2004), Concrete-filled steel circular tubes subjected to constant amplitude cyclic pure bending, Engineering Structures, 2125-2135.
  16. Popovics, S. (1973), A Numerical Approach to the Complete Stress-Strain Curve for Concrete, Cement Concrete Research, 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3
  17. Saatcioglu, M., and Razvi, S. R. (1992), Strength and Ductility of Confined Concrete, Journal of Structural Engineering, ASCE, 118(6), 1590-1607. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590)
  18. Susantha K. A. S., Hanbin Ge, Tsutomu Usami (2001), Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes, Engineering Structures, 1331-1347.9. https://doi.org/10.1016/S0141-0296(01)00020-7
  19. Tang, J., Hino, S., Kuroda, I., and Ohta, T. (1996), Modeling of Stress-Strain Relationships for Steel and Concrete in Concrete Filled Circular Steel Tubular Columns, Steel Construction Engineering, JSSC, 3(11), 35-46.
  20. Yan Xiao, Wenhui He, Kang-kyu Choi (2005), Confined Concrete-Filled Tubular Columns, Journal of structural Engineering, 131(3), 488-497. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(488)