참고문헌
- Bae GH. 2000. The medicinal plants of Korea. Kyohak Publishing Co., Seoul, Korea. p 231.
- Pang KC, Kim MS, Lee MW. 1996. Hydrolyzable tannins from the fruits of Rubus coreanum. Kor J Pharmacogn 27:366-370.
- Lee MW. 1995. Phenolic compounds from the leaves of Rubus coreanum. Yakhak Hoeji 39: 200-204.
- Lee YA, Lee LM. 1995. Tannins from Rubus coreanum. Kor J Pharmacogn 26: 27-30.
- Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP. 2005. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139: 652-663. https://doi.org/10.1104/pp.105.064238
- Koundouras S, Marions V, Gkoulioti A, Kotseridis Y, van Leeuwen C. 2006. Effects on wine phenolic and aroma components. J Agric Food Chem 54: 5077-5086. https://doi.org/10.1021/jf0605446
- Watson R, Wright CJ, Mcburney T, Taylor AJ, Linforth RS. 2002. Influence of harvest date and light integral on the development of strawberry flavour compounds. J Exp Bot 53: 2121-2129. https://doi.org/10.1093/jxb/erf088
- Moon GS. 1991. Constituents and uses of medicinal herbs. Ilweolseogak, Seoul, Korea. p 310-311.
- Wang SY, Lin HS. 2000. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48:140-146. https://doi.org/10.1021/jf9908345
- Liu Z, Schwimer J, Liu D, Greenway FL, Anthony CT, Woltering EA. 2005. Raspberry extract and fractions contain angiogenesis inhibitors. J Agric Food Chem 53: 3909-3951. https://doi.org/10.1021/jf048585u
- Stoner GD, Chen T, Kresty LA, Aziz RM, Reinemann T, Nines R. 2006. Protection against esophageal cancer in rodents with lyophilized berries: potential mechanisms. Nutr Cancer 54: 33-46. https://doi.org/10.1207/s15327914nc5401_5
- Kim JM. 2011. Characteristics of Rubus coreanus Miq. fruits at different ripening stages. Korean J Food Sci Technol 43: 341-347. https://doi.org/10.9721/KJFST.2011.43.3.341
- Yang HM, Lim SS, Lee YS, Shin HK. 2007. Comparison of the anti-inflammatory rffects of the extracts from Rubus coreanus and Rubus occidentalis. Korean J Food Sci Technol 39: 342-347.
- Lee S, You Y, Kim K, Park J, Jeong C, Jhon DY, Jun W. 2012. Antioxidant activities of native Gwangyang Rubus coreanus Miq. J Korean Soc Food Sci Nutr 41: 327-332. https://doi.org/10.3746/jkfn.2012.41.3.327
- Park Y, Choi S, Kim SH, Han JG, Chung HG. 2007. Changes in antioxidant activity, total phenolics and vitamin C content during fruit ripening in Rubus occidentalis. Korean J Plant Res 20: 461-465.
- Hayes JE, Allen P, Brunton N, O'Grady MN, Kerry JP. 2011. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical product: olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem 126: 948-955. https://doi.org/10.1016/j.foodchem.2010.11.092
- Mandrioli R, Mercolini L, Ferranti A, Fanali S, Raggi MA. 2011. Determination of aloe emodin in Aloe vera extracts and commercial formulations by HPLC with tandem UV absorption and fluorescence detection. Food Chem 126:387-393. https://doi.org/10.1016/j.foodchem.2010.10.112
- Marinova D, Ribarova F, Atanassova M. 2005. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 40: 255-260.
- Goupy P, Hugues M, Boivin P, Amiot MJ. 1999. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric 79: 1625-1634. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1625::AID-JSFA411>3.0.CO;2-8
- Jeon YS, Jo BS, Park HJ, Kang SA, Cho YJ. 2012. Screening of biological activity of Caragana sinica extracts. J Korean Soc Food Sci Nutr 41: 1211-1219. https://doi.org/10.3746/jkfn.2012.41.9.1211
- Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
- Thongchai W, Liawruangrath B, Liawruangrath S. 2009. Flow injection analysis of total curcuminoids in turmeric and antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Food Chem 112: 494-499. https://doi.org/10.1016/j.foodchem.2008.05.083
- Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol 54: 270-275. https://doi.org/10.1016/j.ijbiomac.2012.12.037
- Chen HJ, Ho CH. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45: 2374-2378. https://doi.org/10.1021/jf970055t
- Yang HY, Steele WF. 1958. Removal of excessive anthocyanin pigment by enzyme. Food Technol 12: 517-519.
- Re R, Pellegrinni N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1996. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237.
- Loganayaki N, Suganya N, Manian S. 2012. Evaluation of edible flowers of agathi (Sesbania grandiflora L. Fabaceae) for in vivo anti-inflammatory and analgesic, and in vitro antioxidant potential. Food Sci Biotechnol 21: 509-517. https://doi.org/10.1007/s10068-012-0065-6
- Joung CH, Bac YI, Prak SJ, Lee SK, Hur SJ. 2012. Antioxidant activity of aqueous extracts from three cultivars of guava leaf. Food Sci Biotechnol 21: 1557-1563. https://doi.org/10.1007/s10068-012-0207-x
- Jun HI, Kim YA, Kim YS. 2014. Antioxidant activities of Rubus coreanus Miquel and Morus alba L. fruits. J Korean Soc Food Sci Nutr 43: 381-388. https://doi.org/10.3746/jkfn.2014.43.3.381
- Moure A, Cruz JM, Franco D, Domínguez JM, Sineiro J, Dominguez H, Jose Nunez M, Parajo JC. 2001. Natural antioxidants from residual sources. Food Chem 72: 145-171. https://doi.org/10.1016/S0308-8146(00)00223-5
- Yang HJ, Park MJ, Lee HS. 2011. Antioxidative activities and components of Gardenia jasminoides. Korean J Food Sci Technol 43: 51-57. https://doi.org/10.9721/KJFST.2011.43.1.051
- Lee MY, Yoo MS, Whang YJ, Jin YJ, Hong MH, Pyo YH. 2012. Vitamin C, total polyphenol flavonoid contents and antioxidant capacity of several fruit peels. Korean J Food Sci Technol 44: 540-544. https://doi.org/10.9721/KJFST.2012.44.5.540
피인용 문헌
- Antioxidant Activities of Ethanol Extracts from Different Parts of the Black Raspberry (Rubus occidentalis) Obtained Using Ultra-sonication vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.504
- Phenolic composition of fruits from different cultivars of red and black raspberries grown in Poland vol.52, 2016, https://doi.org/10.1016/j.jfca.2016.08.003
- Rubus occidentalis: The black raspberry—its potential in the prevention of cancer vol.68, pp.1, 2016, https://doi.org/10.1080/01635581.2016.1115095
- Integration of Traditional and Metabolomics Biomarkers Identifies Prognostic Metabolites for Predicting Responsiveness to Nutritional Intervention against Oxidative Stress and Inflammation vol.9, pp.3, 2017, https://doi.org/10.3390/nu9030233
- Comparison of ellagic acid contents in Korean and Chinese cultivated species of unripe black raspberries vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.549
- Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions pp.2092-6456, 2019, https://doi.org/10.1007/s10068-018-0352-y
- 남성생식세포 Sertoli cell에 미치는 복분자(覆盆子)의 항산화 효과 vol.26, pp.2, 2014, https://doi.org/10.14374/hfs.2018.26.2.103
- 성숙도에 따른 복분자 열매의 미백 활성 비교 vol.53, pp.2, 2014, https://doi.org/10.4163/jnh.2020.53.2.121
- Analytical method validation of ellagic acid as an antioxidative marker compound of the Rubus occidentalis extract vol.28, pp.5, 2014, https://doi.org/10.11002/kjfp.2021.28.5.663
- Development of fruit color in Rubus chingii Hu (Chinese raspberry): A story about novel offshoots of anthocyanin and carotenoid biosynthesis vol.311, pp.None, 2021, https://doi.org/10.1016/j.plantsci.2021.110996
- Sanguiins-Promising Molecules with Broad Biological Potential vol.22, pp.23, 2014, https://doi.org/10.3390/ijms222312972