DOI QR코드

DOI QR Code

Characterizations of Copoly(ester imide)s with New 2,7-Dihydroxynaphthalene Bis(trimellitate anhydride)

새로운 2,7-Dihydroxynaphthalene Bis(trimellitate anhydride) 무수물을 이용한 폴리(에스터 이미드) 공중합체의 특성

  • Ju, Jieun (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
  • 주지은 (금오공과대학교 에너지융합소재 공학부) ;
  • 장진해 (금오공과대학교 에너지융합소재 공학부)
  • Received : 2014.02.14
  • Accepted : 2014.04.07
  • Published : 2014.09.25

Abstract

2,7-Dihydroxynaphthalene bis(trimellitate anhydride) (2,7-TA) was synthesized from trimellitic anhydride chloride and 2,7-dihydroxynaphthalene. Copolyimides (Co-PI) containing ester group were synthesized from 2,7-TA, pxylylenediamine, and 2,2'-bis(trifluoromethyl)benzidine (TFB). The Co-PI films were obtained from poly(amic acid) by solution casting through thermal imidization on a glass plate. The thermal property, gas permeation, and optical transparency of the Co-PI films with various TFB monomer contents were investigated. These Co-PIs could be solution-cast into a flexible and tough film. The cast Co-PI films exhibited high optical transparency with a cut-off wavelength of 370~395 nm in UV-vis. absorption and a low yellow index value of 3.55~7.63. The thermal property of Co-PI films increased linearly with increasing TFB content. However, the oxygen permeation and optical transparency of the Co-PI films was found to worsen with increasing TFB content.

Trimellitic anhydride chloride와 2,7-dihydroxynaphthalene을 이용하여 2,7-dihydroxynaphthalene bis(trimellitate anhydride) (2,7-TA)의 무수물 단량체를 합성하였다. 합성된 2,7-TA와 p-xylylenediamine 및 2,2'-bis(trifluoromethyl) benzidine(TFB)을 다양한 몰 비로 반응하여 얻은 폴리아믹산(polyamic acid, PAA)을 유리판에서 열처리하여 에스터기를 가지는 폴리이미드 공중합체(copolyimide, Co-PI)를 합성하였다. 합성된 Co-PI는 TFB의 몰 비 조성에 따라 열적 성질, 가스 투과도, 및 광학 성질 등을 조사하였다. 용액 캐스팅으로 합성된 Co-PI 필름은 유연하고 질긴 성질을 보였다. Co-PI 필름은 모두 투명하였으며, 각 필름의 cut-off wavelength은 370~395 nm이었고, 노란색 지수는 3.55~7.63의 비교적 낮은 값을 보여주었다. Co-PI 필름의 열적 성질들은 TFB의 몰 비가 증가할수록 증가하였지만, 산소 차단성과 광학 투명성에서는 반대의 결과를 보여주었다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. H.-W. Wang, R.-X. Dong, H.-C. Chu, K.-C. Chang, and W.-C. Lee, Mater. Chem. Phys., 94, 42 (2005). https://doi.org/10.1016/j.matchemphys.2005.04.037
  2. X. L. Wang, Y. F. Li, C. L. Gong, T. Ma, and F. C. Yang, J. Fluor. Chem., 129, 56 (2008). https://doi.org/10.1016/j.jfluchem.2007.08.014
  3. Z. Ge, L. Fan, and S. Yang, Eur. Polym. J., 44, 1252 (2008). https://doi.org/10.1016/j.eurpolymj.2008.01.041
  4. S. H. Hsiao and Y. J. Chen, Eur. Polym. J., 38, 815 (2002). https://doi.org/10.1016/S0014-3057(01)00229-4
  5. E. Y. Lee, T. S. Hwang, and J. D. Nam, Polymer(Korea), 36, 448 (2012).
  6. U. K. Min and J.-H. Chang, Polymer(Korea), 34, 495 (2010).
  7. M. B. Saeed and M. S. Zhan, Eur. Polym. J., 42, 1844 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.004
  8. S. L. Ma, Y. S. Kim, J. H. Lee, J. S. Kim, I. S. Kim, and J. C. Won, Polymer(Korea), 29, 204 (2005).
  9. M. Hasegawa, M. Horiuchi, and Y. Wada, High Perform. Polym., 19, 175 (2007). https://doi.org/10.1177/0954008306073178
  10. J.-G. Liu, X.-J. Zhao, H.-S. Li. Fan, and S.-Y. Yang, High Perform. Polym., 18, 851 (2006). https://doi.org/10.1177/0954008306063639
  11. C. H. Choi and J.-H. Chang, Polymer(Korea), 37, 618 (2013).
  12. R. H. Vora, Mater. Sci. Eng. B, 168, 71 (2010). https://doi.org/10.1016/j.mseb.2009.10.023
  13. J. Ramiro, J. I. Eguiazabal, and J. Nazabal, Eur. Polym. J., 42, 458 (2006). https://doi.org/10.1016/j.eurpolymj.2005.07.002
  14. J. E. Han, B. K. Jeon, B. J. Goo, S. H. Cho, S. H. Kim, K. S. Lee, Y. H. Park, and J. Y. Lee, Polymer(Korea), 33, 91 (2009).
  15. H. Behniafar and A. Banihashemi, Eur. Polym. J., 40, 1409 (2004). https://doi.org/10.1016/j.eurpolymj.2004.02.006
  16. H. S. Jin and J.-H. Chang, J. Appl. Polym. Sci., 107, 109 (2008). https://doi.org/10.1002/app.26173
  17. M. Sato, M. Inata, and I. Yamaguchi, J. Appl. Polym. Sci., 126, E298 (2012). https://doi.org/10.1002/app.36956
  18. D. J. Liaw, C. L. Fan, C. C. Lin, and K. L. Wang, J. Appl. Polym. Sci., 92, 2486 (2004). https://doi.org/10.1002/app.20173
  19. C.-Y. Yang, L.-C. Hsu, and J. S. Chen, J. Appl. Polym. Sci., 98 2064 (2005). https://doi.org/10.1002/app.22410
  20. S.-U. Kim, C. Lee, S. Sundar, W. Jang, S.-J. Yang, and H. Han, J. Polym. Sci., Part B: Phys. Ed., 42, 4303 (2004). https://doi.org/10.1002/polb.20270
  21. M. Ree, T. J. Shin, S. I. Kim, S. H. Woo, and D. Y. Yoon, Polymer, 39, 2521 (1998). https://doi.org/10.1016/S0032-3861(97)00555-7
  22. J. U. Park, S. H. Cho, K. S. Cho, K. Y. Ahn, S. J. Lee, and S. J. Lee, Korea-Aust. Rheol. J., 17, 41 (2005).
  23. C.-P. Yang, Y.-Y. Su, and Y.-C. Chen, J. Appl. Polym. Sci., 102, 4101 (2006). https://doi.org/10.1002/app.24118
  24. C. Lee, N. P. Iyer, and H. Han, J. Polym. Sci., Part B: Phys. Ed., 42, 2202 (2004).
  25. M. Hasegawa and S. Horii, Polym. J., 39, 610 (2007). https://doi.org/10.1295/polymj.PJ2006234
  26. D.-J. Liaw and W.-H. Chen, Polym. Degrad. Stabil., 91, 1731 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.11.020
  27. K. Kurita, Y. Suzuki, T. Enari, S. Kshii, and S.-I. Nishimura, Macromolecules, 28, 1801 (1995). https://doi.org/10.1021/ma00110a012
  28. K. A. Zhubanov, T. S. Abil'din, N. B. Bizhanova, B. A. Zhubanov, and V. D. Kravtsova, Russ. J. Appl. Chem., 76, 1304 (2003). https://doi.org/10.1023/B:RJAC.0000008307.50543.8b
  29. M. Hasegawa and K. Koseki, High Perform. Polym., 18, 697 (2006). https://doi.org/10.1177/0954008306068231
  30. M. Hasegawa, Y. Sakamoto, Y. Tanaka, and Y. Kobayashi, Eur. Polym. J., 46, 1510 (2010). https://doi.org/10.1016/j.eurpolymj.2010.04.014
  31. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, Hartcourt, Washington D.C., 2001.
  32. S. Y. Yang, C. E. Park, and M. S. Jung, Polymer, 44, 3243 (2003). https://doi.org/10.1016/S0032-3861(03)00273-8
  33. I. H. Choi and J.-H. Chang, Polymer(Korea), 34, 480 (2010).
  34. J. Fan, S. Hu, and C. Y. Yue, Polym. Int., 52, 15 (2003). https://doi.org/10.1002/pi.962
  35. T. Sasaki, H. Moriuchi, S. Yano, and R. Yokota, Polymer, 46, 6968 (2005). https://doi.org/10.1016/j.polymer.2005.06.052
  36. J. Y. Lee and J. Jang, Polym. Bull., 38, 447 (1997). https://doi.org/10.1007/s002890050072
  37. H. L. Tyan, Y. C. Liu, and K. H. Wei, Chem. Mater., 11, 1942 (1999). https://doi.org/10.1021/cm990187x
  38. S. Mastsui, H. Sato, and T. Nakagawa, J. Memb. Sci., 141, 31 (1998). https://doi.org/10.1016/S0376-7388(97)00286-X
  39. D. Jarus, A. Hiltner, and E. Baer, Polymer, 43, 2401 (2002). https://doi.org/10.1016/S0032-3861(01)00790-X
  40. Y.-Y. Chen, C.-P. Yang, and S.-H. Hsiao, Eur. Polym. J., 42, 1705 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.021
  41. J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando, and M. Ueda, Macromolecules, 40, 4614 (2007). https://doi.org/10.1021/ma070706e
  42. M. C. Oh, H. Zhang, A. Szep, V. Chuyanov, W. H. Steier, C. Zhang, L. R. Dalton, H. Erling, B. Tsap, and H. R. Fetterman, Appl. Phys. Lett., 76, 3525 (2000). https://doi.org/10.1063/1.126695
  43. M. Hasegawa and K. Horie, Prog. Polym. Sci., 26, 259 (2001). https://doi.org/10.1016/S0079-6700(00)00042-3