DOI QR코드

DOI QR Code

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June (Department of Forest Products and Biotechnology, Kookmin University)
  • Received : 2014.02.24
  • Accepted : 2014.04.27
  • Published : 2014.09.25

Abstract

Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.

Keywords

References

  1. Ajioka, M., Enomoto, K., Suzuki, K., Yamaguchi, A. 1995. The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid. J. of Environmental Polymer Degradation, 3(4): 225-234. https://doi.org/10.1007/BF02068677
  2. Belgacem, M.N., Bataille, P., Sapieha, S. 1994. Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. J. of Applied Polymer Science, 53(4): 379-386. https://doi.org/10.1002/app.1994.070530401
  3. Berins, M.L. 2002. Plastics Engineering Handbook of the Society of the Plastics Industry, Kluwer Academic Publishers, Norwell, USA.
  4. Bledzki, A K., Reihmane, S., Gassan, J. 1998. Thermoplastics reinforced with wood fillers: A literature review. J. Polymer-Plastics Technology and Engineering 37(4): 451-468. https://doi.org/10.1080/03602559808001373
  5. Borysiak, S. 2013. Fundamental studies on lignocellulose/polypropylene composites: Effects of wood treatment on the transcrystalline morphology and mechanical properties, J. of Applied Polymer Science 127(2): 1309-1322. https://doi.org/10.1002/app.37651
  6. Boussaid, A., Saddler, J.N. 1999. Adsorption and activity profiles of cellulases during the hydrolysis of two Douglas fir pulps. Enzyme and Microbial Technology, 24(3-4): 138-243. https://doi.org/10.1016/S0141-0229(98)00096-9
  7. Brydson, J.A. 1999. Plastics Materials, Butterworth Heinemann Publishing, Woburn, USA.
  8. Chang, T.C. 1998. Plasma surface treatment in composites manufacturing. J. of Industrial Technology, 15(1): 2-7.
  9. Clemons, C. 2002. Wood-plastic composites in the United States - The interfacing of two industries. J. of Forest Products 52(6): 10-18.
  10. Doshi, S.R., Charrier, J.M., Dealy, J.M. 1988. A coextrusion process for the manufacture of short-fiberreinforced thermoplastic pipe. Polymer Engineering and Science, 28(15), 964-973. https://doi.org/10.1002/pen.760281505
  11. Drzal, L.T., Mohanty, A., Misra, M. 2001. Bio-composite materials as alternatives to petroleumbased composites for automotive applications. In Proc. of Automotive Composites Conference, pp. 1-8. Troy, USA.
  12. Faruk, O., Bledzki, A.K., Fink, H.-P., Sain, M. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37(11): 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  13. Felix, J., Gatenholm, P., Schreiber, H.P. 1994. Plasma modification of cellulose fibers: Effects on some polymer composite properties. J. of Applied Polymer Science, 51(2): 285-295. https://doi.org/10.1002/app.1994.070510211
  14. Giles, H.F., Wagner, J.R., Mount, E.M. 2005. Extrusion: The definitive processing guide and handbook, William Andrew Inc., Norwich, USA.
  15. Harper, A. 1999. Modern Plastics Handbook, McGraw-Hill, New York, USA.
  16. Hoadley, R.M. 1990. Identifying Wood - Accurate Results with Simple Tools, Taunton Press, Connecticut, USA.
  17. Huang R., Kim, B.-J., Lee, S., Yang, Z., Wu, Q. 2013. Co-Extruded Wood-Plastic Composites with Talc-Filled Shells: Morphology, Mechanical, and Thermal Expansion Performance. Bioresources 8(2): 2283-2299.
  18. Iiyama, K., Wallis, A.F.A. 1988. An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Science and Technology, 22(3): 271-280.
  19. John, M.J., Thomas, S. Biofibres and biocomposites. 2008. Carbohydrate Polymers 71(3): 343-364. https://doi.org/10.1016/j.carbpol.2007.05.040
  20. Kabir, M.M., Wang, H., Aravinthan, T., Cardona, F., Lau, K.-T. 2011. Effects of natural fibre surface on composite properties: A review. In Proc. of 1st International Postgraduate Conference on Engineering, Designing and Developing the Built Environment for Sustainable. pp. 94-99, Wellbeing, Australia.
  21. Kim, B.-J. 2012. The effect of inorganic fillers on the properties of wood plastic composites. Ph.D. Dissertation, Louisiana State University, USA.
  22. Kim, B.-J. Yao, F., Han, G., Wang, Q., Wu, Q. 2013. Mechanical and physical properties of core-shell structured wood plastic composites: Effect of shells with hybrid mineral and wood fillers. Composites Part B: Engineering 45(1): 81-84.
  23. Kim, B.-J., Yao, F., Han, G., Wu, Q. 2012. Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polymer Composites, 33(1): 68-78. https://doi.org/10.1002/pc.21244
  24. Kim, S., Do, I., Drzal, L.T. 2009. Multifunctional xGnP/LLDPE nanocomposites fabricated by solution compounding method and various screw rotating systems. Macromolecular Materials and Engineering, 294(3): 196-205. https://doi.org/10.1002/mame.200800319
  25. Kim, Y.J., Han, C.D., Song, B.K., Kouassi, E. 1984. Mechanical and transport properties of coextruded films. Journal of Applied Polymer Science 29(7): 2359-2382. https://doi.org/10.1002/app.1984.070290711
  26. Lee, S.-Y., Kang, I.-A., Doh, D.-H., Yoon, H.-G., Park, B.-D., Wu, Q. 2008. Thermal and mechanical properties of wood flour/talc-filled polyactic acid composites: Effect of filler content and coupling treatment. J. of Thermoplastic Composite Materials, 21(3): 209-223. https://doi.org/10.1177/0892705708089473
  27. Lewandowski, K., Zajchowski, S., Mirowski, J., Kosciuszko, 2011. A. Study of processing properties of PVC/wood composites. CHEMIK International, 65(4): 329-336.
  28. Lu, J.Z., Negulescu, I.I., Wu, Q. 2002. Thermal and dynamic-mechanical properties of wood-PVC composites. in Proc. of 6th Pacific Rim Bio-Based Composites Symposium & Workshop on the Chemical Modification of Cellulosics, pp. 103-111, Portland, USA.
  29. Lu, J.Z., Negulescu, I I., Wu, Q. 2005. Wood-fiber/high-density-polyethylene composites: Coupling agent performance. J. of Applied Polymer Science, 96(1): 93-102. https://doi.org/10.1002/app.21410
  30. Lu, J.Z., Wu, Q. 2000. Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments. Wood and Fiber Science, 32(1), 88-104.
  31. Mahlberg, R., Niemi, H.E.-M., Denes, F.S., Rowell, R. M. 1999. Application of AFM on the Adhesion Studies of Oxygen-Plasma-Treated Propylene and Lignocellulosics, Langmuir, 15(8): 2985-2992. https://doi.org/10.1021/la980139b
  32. Maldas, D., Kokta, B.V., Daneault, C. 1989. Composites of polyvinyl chloride-wood fibers: IV. Effect of the nature of fibers. J. of Vinyl & Additive Technology, 11(2): 90-99. https://doi.org/10.1002/vnl.730110209
  33. Matthews, F.L., Rawlings, R.D. 1999. Composite Materials: Engineering and Science, Woodhead Publishing Limited, Sawston, UK.
  34. Matuana, L.M., Park, C.B., Balatinecz, J.J. 1997. Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites. Polymer Engineering and Science, 37(7): 1137-1147. https://doi.org/10.1002/pen.11758
  35. Matuana, L.M., Park, C.B., Balatinecz, J.J. 1997. The effect of low levels or plasticizer on the rheological and mechanical properties of polyvinyl chloride/newsprint-fiber composites. J. of Vinly & Additive Technology, 3(4): 265-273. https://doi.org/10.1002/vnl.10204
  36. Mohanty, A.K., Misra, M., Drzal, L.T. 2002. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. J. of Polymers and the Environment 10(1): 19-26. https://doi.org/10.1023/A:1021013921916
  37. Mohanty, A.K., Misra, M., Hinrichsen, G.. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276(1): 1-24.
  38. Park, B.-D., Wi, S.G.., Lee, K.H., Singh, A.P., Yoon, T.-H., Kim, Y.S. 2004. X-ray photoelectron spectroscopy of rice husk surface modified with maleated polypropylene and silane. Biomass and Bioenergy, 27(4): 353-363. https://doi.org/10.1016/j.biombioe.2004.03.006
  39. Raj, R.G.., Kokta, B.V., Daneault, C. 1990. A comparative study on the effect of aging on mechanical properties of LLDPE-glass fiber, mica, and wood fiber composites. Polymer Engineering & Science, 4(5): 645-655.
  40. Rosato, V. 1998. Extruding plastics - A practical processing handbook, Chapman & Hall, Norwell, USA.
  41. Rowell, R.M. 2005. Handbook of Wood Chemistry and Wood Composites, CRC Press, Boca Raton, USA.
  42. Saheb, N., Jog, J.P. 1999. Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4): 351-363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
  43. Stark, N.M., Berger, M.J. 1997. Effect of Particle Size on Properties of Wood-Flour Reinforced Polypropylene Composites. In Proc. of 4th International Conference on Woodfiber-Plastic Composites, pp.134-143, Madison, USA.
  44. Takase, S., Shiraishi, N. 1989. Studies on composites from wood and polypropylene. II. Journal of Applied Polymer Science, 37(3): 645-659. https://doi.org/10.1002/app.1989.070370305
  45. Wolcott, M.P., Englund, K. 1999. A technology review of wood-plastic composites. In Proc. of 33rd International Particleboard/Composite Materials Symposium, pp. 103-111, Pullman, USA.
  46. Woodhams, R.T., Thomas, G., Rodgers, D.K. 1984. Wood fibers as reinforcing fillers for polyolefins. Polymer Engineering & Science, 24(15): 1166-1171. https://doi.org/10.1002/pen.760241504
  47. Xanthos, M. 2005. Functional Fillers for Plastics, Wiley-VCH, Weinheim, Germany.
  48. Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H., Mai, C. 2010. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819. https://doi.org/10.1016/j.compositesa.2010.03.005
  49. Yam, K.L., Gogoi, B.K., Lai, C.C., Selke, S.E. 1990. Composites from compounding wood fibers with recycled high density polyethylene. Polymer Engineering & Science, 30(11): 693-699. https://doi.org/10.1002/pen.760301109
  50. Yao, F., Wu, Q. 2010. Coextruded polyethylene and wood-flour composite: Effect of shell thickness, wood loading, and core quality. Journal of Applied Polymer Science, 118(6): 3594-3601. https://doi.org/10.1002/app.32742
  51. Yue, Y., Zhou, C., French, A.D., Xia, G., Han, G., Wang, Q., Wu, Q. 2012. Comparative properties of cellulose nano-crystals from native and mercerized fibers. Cellulose, 19(4): 1173-1187. https://doi.org/10.1007/s10570-012-9714-4
  52. Zaverl, M., Seydibeyoglu, M.O., Misra, M., Mohanty, A. 2012. Studies on recyclability of polyhydroxybutyrate-co-valerate bioplastic: Multiple melt processing and performance evaluations. J. of Applied Polymer Science, 125(2): 324-331. https://doi.org/10.1002/app.36840

Cited by

  1. Effect of Nano-CaCO3 and Talc on Property and Weathering Performance of PP Composites vol.2017, 2017, https://doi.org/10.1155/2017/4512378
  2. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood–Plastic Composites vol.46, 2015, https://doi.org/10.1016/j.wasman.2015.09.011