DOI QR코드

DOI QR Code

고차원 변조방식을 적용한 이진 부호화된 물리계층 네트워크 코딩에 관한 연구

A Study on the Binary-Coded Physical-Layer Network Coding with High-Order Modulation Techniques

  • Lim, Hyeonwoo (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Ban, Tae-Won (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Jung, Bang Chul (Department of Information and Communication Engineering, Gyeongsang National University)
  • 투고 : 2014.08.05
  • 심사 : 2014.09.05
  • 발행 : 2014.09.30

초록

본 논문은 무선통신 환경에서 이진 부호화된 네트워크 코딩 기술을 고차원 변조 방식과 결합하는 방식을 다룬다. 기존의 물리계층 네트워크 코딩 기술에서 중계 노드는 2개의 소스 노드에서 수신된 심볼들 사이의 엄격한 전력 제어와 위상 보상을 요구한다. 그러나 무선 페이딩 채널을 고려하면 소스 노드들에서 채널을 미리 알고 보상하는 것은 쉽지 않다. 따라서 본 논문에서는 중계노드에서 수신단 채널 정보만을 이용하는 네트워크 코딩 수신 기법을 고려한다. 특히, 각 소스 노드들이 QPSK, 16QAM 등과 같은 고차원 변조방식을 사용했을 경우 사용할 수 있는 수신 기법을 제안하고, 채널 부호화 기법이 적용되었을 경우와 적용되지 않았을 경우에 대하여 그 성능을 분석한다.

In this paper, a binary-coded physical-layer network coding (PNC) is considered when high-order modulation techniques are used at source nodes in wireless communication environments. In the conventional PNC schemes, tight power control and phase compensation are required at a relay node. However, they may not be feasible in practical wireless communication environments. Thus, we do not assume the pre-equalization in this paper, and we only utilize the channel state information at receiver (CSIR). We propose a signal detection method for the binary-coded PNC with high-order modulation, such as QPSK and 16QAM, at the source nodes, while the conventional scheme only consider the BPSK at source nodes. We also analyze the bit-error performance of the proposed technique in both uncoded and coded cases.

키워드

참고문헌

  1. D. Soldani and S. Dixit, "Wireless relays for broadband access," IEEE Communi. Mag. Vol. 46, No. 3, pp. 58-66, Mar. 2008.
  2. T. M. Cover and A. El Gamal, "Capacity theorems for the relay channel," IEEE Trans. on Inform. Theory, Vol. 25, No. 5, pp. 572-584, Sept. 1979. https://doi.org/10.1109/TIT.1979.1056084
  3. D. Bharadia, E. McMilin, and S. Katti, "Full duplex radios," in Proc. of ACM SIGCOMM, 2013
  4. B. Rankov and A. Wittneben, "Spectral efficient protocols for half duplex fading relay channels," IEEE Journal on Select. Areas Communi., Vol. 25, No. 2, pp. 379-389, Feb. 2007. https://doi.org/10.1109/JSAC.2007.070213
  5. C. E. Shannon., "Two-way communication channels," In Berkeley Symp. Math. Stat. and Prob., Vol. 25, pp. 611-644, 1961.
  6. S. Zhang, S.-C. Liew, and P. P. K. Lam, "Physical-layer network coding," in Proc. of ACM MobiCom 2006, Sep. 2006.
  7. H. J. Yang, B. C. Jung, and J. Chun, "Zero-forcing based two-phase relaying with multiple mobile stations," in Proc. of Asiloma Conference on Signals, Systems, and Computers, Oct. 2008.
  8. Z. Hing, K. K. Leung, D. L. Goeckel, and D. Towsley, "On the study of network coding with diversity," IEEE Trans. on Wireless Communications, Vol. 8, No. 3, pp. 1247-1259, Mar. 2009. https://doi.org/10.1109/TWC.2009.07051022
  9. T. Koike-Akino, P. Popovski, and V. Tarokh, "Optimized constellations for two-way wireless relaying with physical network coding," IEEE Journal on Selected Areas in Communications, Vol. 27, No. 5, pp. 773-787, Jun. 2009. https://doi.org/10.1109/JSAC.2009.090617
  10. M. Park, I. Choi and I. Lee, "Exact BER analysis of physical layer network coding for two-way relay channels," in Proc. of IEEE VTC, May. 2011.
  11. B. C. Jung, "A Practical Physical-Layer Network Coding for Fading Channels," International Journal of KIMICS, Vol. 8, No. 6, pp. 655-659, Dec. 2010. https://doi.org/10.6109/jicce.2010.8.6.655
  12. B. C. Jung and D. K. Sung, "Performance analysis of orthogonal code hopping multiplexing systems with repetition, convolutional, and turbo codes," IEEE Trans. on Vehicular Technology, Vol. 57, No. 3, pp. 932-944, Mar. 2008. https://doi.org/10.1109/TVT.2007.905598