DOI QR코드

DOI QR Code

고에너지 가스발생기용 보론 비드의 연소특성 연구

Study on Boron-bead Combustion Characteristics for High Energy Gas Generator

  • Han, Doo-Hee (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kang, Jeong-Seok (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Shin, Jun-Su (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sung, Hong-Gye (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Shin, Kyung-Hoon (R&D Team, Daejeon Plant, Hanwha Corporation) ;
  • Choi, Sung-Han (R&D Team, Daejeon Plant, Hanwha Corporation) ;
  • Hwang, Kab-Sung (Advanced Propulsion Technology Center, Agency for Defense Development)
  • 투고 : 2014.06.06
  • 심사 : 2014.07.17
  • 발행 : 2014.08.01

초록

가스발생기의 고 효율화를 위해 고에너지 물질인 보론을 사용한 보론 비드의 비드 입도 및 성분에 따른 연소특성을 조사하였다. 본 연구는 전기적으로 가열 된 텅스텐 시트와 가시화된 전기로를 사용하여 각각 점화온도와 연소 시간을 측정하고, 고속 카메라로 연소 과정을 측정하였다. 실험 결과 점화 온도는 720~800 K 이며, 연소 시간은 보론 비드 직경에 비례하는 것으로 관찰 되었다. 온도와 복사강도 측정값을 사용하여 보론 입자의 점화 지연시간이 존재한다는 것을 확인하였고, 이를 통해 보론 비드의 전반적인 연소 메커니즘을 이해할 수 있었다.

The combustion characteristics of Boron-beads to improve the energy density of gas generator has been investigated in accordance with diameter of beads and their composition. In this paper, electrically heated tungsten sheet and visualized furnace are applied to measure ignition temperature and burning time of bead respectively. The results proposes ignition temperature between 720~800 K and burning time proportional to bead diameter. Also a ignition delay of boron particle is detected through the temperature and radiation intensity measurements.

키워드

참고문헌

  1. Sung, H.G. and Yoon, H.G., "Technical Review and Analysis of Ramjet/Scramjet Technology I, Ramjet Engine (Liquid Ramjet, Ducted Rocket)," Journal of the Korean Society of Propulsion Engineers, Vol. 10, No. 1, pp. 72-86, 2006.
  2. Zhou, W., Yetter R.A. and Dryer, F.L., "A Comprehensive Physical and Numerical Model of Boron Particle Ignition," 26th Symposium (International) on Combustion/The Combustion Institute, pp. 1909-1917, 1996.
  3. Han, D.H., Shin, J.S., Kang, J.S., Sung, H.G., Jung, H.J. and Shin, W.G., "Experimental Study on Ignition and Burning Rate of Nickel and TTIP Coated Aluminum Particles at Atmospheric Pressure," Asian Joint Conference on Propulsion and Power, pp. 5-8, 2014.
  4. Ulas, A. and Kuo, K.K., "Ignition and Combustion of Boron Particles in Fluorine-Containing Environments," Combustion and Flame, Vol. 127, pp. 1935-1957, 2001. https://doi.org/10.1016/S0010-2180(01)00299-1
  5. Dmitriev, V.D. and Kholopov, G.K., "Radiant Emissivity of Tungsten in the Infrared Region of the Spectrum," Zhurnal Prikladnoi Spektroskopii, Vol. 2, No. 6, pp. 481-488, 1965.
  6. Shafirovich, E., Bocanegra, P.E., Chauveau, C., Gokalp, I., Goldshleger, U., Rosenband, V. and Gany, A., "Ignition of Single Nickel-coated Aluminum Particles," Proceedings of the Combustion Institute, Vol. 30, pp. 2055-2062, 2005.
  7. Boyd, E., Houim, R. and Kuo, K.K., "Ignition and Combustion of Nickel Coated and Uncoated Aluminum Particles in Hot Post-Flame Environment," 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2-5, Denver, Colorado, U.S.A., Aug. 2009.
  8. Yeh, C.L. and Kuo, K.K., "Ignition and Combustion of Boron Particles," Progress in Energy and Combustion Science, Vol. 22. pp. 511-541, 1996. https://doi.org/10.1016/S0360-1285(96)00012-3