DOI QR코드

DOI QR Code

The Methylenetetrahydrofolate Reductase C677T Polymorphism and Breast Cancer Risk in Asian Populations

  • Rai, Vandana (Department of Biotechnology VBS Purvanchal University Jaunpur)
  • Published : 2014.07.30

Abstract

Background: Methylenetetrahydrofolate (MTHFR) is the key enzyme of the folate metabolic pathway and several studies have pointed to association between the MTHFR C677T polymorphism and breast cancer risk. Although significant association was observed in some studies, in others no clear link could be established. Objective: A meta-analysis of published Asian case control studies was therefor carried out to shed further light on any C677T breast cancer association. Materials and Methods: PubMed, Springer Link, Google Scholar and Elsevier databases were searched for case control studies of associations between MTHFR C677T polymorphism and breast cancer risk. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. A total of 36 studies including 8,040 cases and 10,008 controls were included in the present meta-analysis. Results: Overall, a significantly elevated breast cancer risk was associated with the T allele and TT genotype in homozygote comparison and dominant genetic models when all studies were pooled into the meta-analysis (T vs C (allele contrast model): OR=1,23, 95%CI=1.13-1.37, p=0.000 ; TT vs CC(homozygote model): OR=1.38, 95%CI=1.16-1.63, p=0.0003; TT+CT vs CC (dominant model): OR=1.12, 95%CI=1.01-1.23, p=0.02). Conclusions: The present meta-analysis strongly suggested a significant association between the MTHFR C677T polymorphism and risk of breast cancer in Asian populations.

Keywords

References

  1. Akram M, Malik FA, Kayani MA (2012). Mutational analysis of the MTHFR gene in breast cancer patients of Pakistani population. Asian Pac J Cancer Prev, 13, 1599-603. https://doi.org/10.7314/APJCP.2012.13.4.1599
  2. Alshatwi AA (2010). Breast cancer risk, dietary intake, and methylenetetrahydrofolate reductase (MTHFR) single nucleotide polymorphisms. Food Chem Toxicol, 48, 1881-5. https://doi.org/10.1016/j.fct.2010.04.028
  3. Antoniou AC, Pharoah PD, McMullan G, et al (2001).Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet Epidemiol, 21, 1-18. https://doi.org/10.1002/gepi.1014
  4. Bailey LB, Gregory JF (1999). Folate metabolism and requirements. J Nutr, 129, 779-82.
  5. Bailey LB (2003). Folate, methyl-related nutrients, alcohol, and the MTHFR 677C!T polymorphism affect cancer risk: intake recommendations. J Nutr, 133, 3748-53.
  6. Bax L, Yu LM, Ikeda N, et al (2006). Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol, 6, 50. https://doi.org/10.1186/1471-2288-6-50
  7. Boccia S, Hung R, Ricciardi G, et al (2007). Meta- and Pooled Analyses of the Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms and Gastric Cancer Risk: A Huge-GSEC Review. Am J Epidemiol, 167, 505-16. https://doi.org/10.1093/aje/kwm344
  8. Botto LD, Yang Q (2000). 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol, 151, 862-77. https://doi.org/10.1093/oxfordjournals.aje.a010290
  9. Cam R, Eroglu A, Egin Y, et al (2009). Dihydrofolate reduc-Tase (DHRF) 19-bp intron-1 deletion and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphisms in breast cancer. Breast Cancer Res Treat, 115, 431-2. https://doi.org/10.1007/s10549-008-0054-x
  10. Chen J, Gammon MD, Chan W, et al (2005). One-carbon metabolism, MTHFR polymorphisms, and risk of breast cancer. Cancer Res, 65, 1606-14. https://doi.org/10.1158/0008-5472.CAN-04-2630
  11. Cheng CW, Yu JC, Huang CS, et al (2008). Polymorphism of cytosolic serine hydroxymethyltransferase, estrogen and breast cancer risk among Chinese women in Taiwan. Breast Cancer Res Treat, 111, 145-55. https://doi.org/10.1007/s10549-007-9754-x
  12. Choi SW, Mason JB (2002). Folate status: effects on pathways of colorectal carcinogenesis. J Nutr, 132, 2413-8.
  13. Chou YC, Wu MH, Yu JC, et al (2006). Genetic polymorphisms of the methylenetetrahydrofolate reductase gene, plasma folate levels, and breast cancer susceptibility: a case-control study in Taiwan. Carcinogenesis, 27, 2295-300. https://doi.org/10.1093/carcin/bgl108
  14. Colhoun HM, McKeigue PM, Davey Smith G (2003). Problems of reporting genetic associations with complex outcomes. Lancet, 361, 865-72. https://doi.org/10.1016/S0140-6736(03)12715-8
  15. Collaborative Group on Hormonal Factors in Breast Cancer (1997). Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52 705 women with breast cancer and 108 411 women without breast cancer. Lancet, 350, 1047-59. https://doi.org/10.1016/S0140-6736(97)08233-0
  16. Deligezer U, Akisik EE, Dalay N (2005). Homozygosity at the C677T of the MTHFR gene is associated with increased breast cancer risk in the Turkish population. In Vivo, 19, 889-93.
  17. DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88. https://doi.org/10.1016/0197-2456(86)90046-2
  18. Duthie SJ(1999). Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull, 55, 578-92. https://doi.org/10.1258/0007142991902646
  19. Egger M, Davey Smith G, Schneider M, Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629-34. https://doi.org/10.1136/bmj.315.7109.629
  20. Ergul E, Sazci A, Utkan Z, Canturk NZ (2003). Polymorphisms in the MTHFR gene are associated with breast cancer. Tumour Biol, 24, 286-90. https://doi.org/10.1159/000076460
  21. Esteller M, Garcia A, Martinez-Palones JM, et al (1997). Germ line polymoephisms in cytochrome P450 1A1(C4887 CYPIA1) and methylenetetrahydrofolate reductase (MTHFR) genes and endometral cancer susceptibility. Carcinogenesis, 18, 2307-11. https://doi.org/10.1093/carcin/18.12.2307
  22. Ferlay J, Bray F, Pisani P, Parkin DM (2000). Cancer incidence, mortality and prevalence worldwide. IARC Cancer Base No. 5 [CD-ROM]. Version 1.1. Lyon: IARC Press.
  23. Friso S, Choi SW, Girelli D, et al (2002). A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate staus. Proc Natl Acad Sci USA, 99, 5606-11. https://doi.org/10.1073/pnas.062066299
  24. Frosst P, Bloom HJ, Milos R, et al (1995). A Candidate Genetic Risk Factor for Vascular Disease: a Common Mutation in Methylenetetrahydrofolate Reductase. Nat Genet, 10, 111-3. https://doi.org/10.1038/ng0595-111
  25. Gao CM, Tang JH, Cao HX, et al (2009). MTHFR polymorphisms, dietary folate intake and breast cancer risk in Chinese women. J Hum Genet, 5, 414-8
  26. Hekim N, Ergen A, Yaylim I, et al (2007). No association between methylenetetrahydrofolate reductase C677T polymorphism and breast cancer. Cell Biochem Funct, 25, 115-17. https://doi.org/10.1002/cbf.1274
  27. Higgins JP, and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat Med, 21, 1539-58. https://doi.org/10.1002/sim.1186
  28. Hosseini M, Houshmand M, Ebrahimi A (2011). MTHFR polymorphisms and breast cancer risk. Arch Med Sci, 7, 134-7.
  29. Hua Z, Wang Y, Ni J, Ge F, Zou T (2011). Serum folate, vitamin b12 concentration and mthfr, ms gene polymorphism associated with risk of breast cancer research. Mod Oncol, 19, 428-31.
  30. Hulka BS, Stark AT (1995). Breast cancer: cause and prevention. Lancet, 346, 883-7. https://doi.org/10.1016/S0140-6736(95)92713-1
  31. Inoue M, Robien K, Wang R, et al (2008). Green tea intake, MTHFR/TYMS genotype and breast cancer risk: the Singapore Chinese Health Study. Carcinogenesis, 29, 1967-72. https://doi.org/10.1093/carcin/bgn177
  32. Jakubowska A, Gronwald J, Menkiszak J, et al (2007). Methylenetetrahydrofolate reductase polymorphisms modify BRCA1-associated breast and ovarian cancer risks. Breast Cancer Res Treat, 104, 299-308. https://doi.org/10.1007/s10549-006-9417-3
  33. Jin ZZ, Lu Q, Ge DH, Zong M, Zhu QH (2009). Effect of the methylenetetrahydrofolate reductase gene C677T polymorphism on C-erbB-2 methylation status and its association with cancer. Mol Med Rep, 2, 283-9.
  34. Jones PA, Laird PW (1999). Cancer epigenetics comes of age. Nat Genet, 21, 163-7. https://doi.org/10.1038/5947
  35. Kalyankumar C, Jamil K (2006). Methylene tetrahydofolate reductase (MTHFR) C677T and A1298C polymorphisms and breast cancer in South Indian population. Int J Cancer Res, 2, 143-51. https://doi.org/10.3923/ijcr.2006.143.151
  36. Kan X, Zou T, Wu X, Wang X (2007) . Yunnan methylenetetrahydrofolate reductase gene polymorphism associated with breast cancer susceptibility. Cancer Res, 34, 716-8
  37. Kelsey JL (1993). Breast cancer epidemiology: summary and future directions. Epidemiol Rev, 15, 256-63.
  38. Kim YI (1999). Folate and carcinogenesis: evidence, mechanisms, and implications. J Nutr Biochem, 10, 66-88. https://doi.org/10.1016/S0955-2863(98)00074-6
  39. Kim YI (2004). Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies. Environ Mol Mutagen, 44, 10-25. https://doi.org/10.1002/em.20025
  40. Kotsopoulos J, Zhang WW, Zhang S, et al (2008). Polymorphisms in folate metabolizing enzymes and transport proteins and the risk of breast cancer. Breast Cancer Res Treat, 8, 9895-6.
  41. Lajin B, Sakur AA, Ghabreau L, Alachkar A (2012). Association of polymorphisms in one-carbon metabolizing genes with breast cancer risk in Syrian women. Tumor Biol, 33, 1133-9. https://doi.org/10.1007/s13277-012-0354-y
  42. Langsenlehner U, Krippl P, Renner W, et al (2003). The common 677C>T gene polymorphism of methylenetetrahydrofolate reductase gene is not associated with breast cancer risk. Breast Cancer Res Treat, 81, 169-72. https://doi.org/10.1023/A:1025752420309
  43. Le Marchand L, Haiman CA, Wilkens LR,et al (2004). Kolonel LN, Henderson BE. MTHFR polymorphisms, diet, HRT, and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev, 13, 2071-7.
  44. Lee SA, Kang D, Nishio H, et al (2004). Methylenetetrahydrofolate reductase polymorphism, diet, and breast cancer in Korean women. Exp Mol Med, 36, 116-21. https://doi.org/10.1038/emm.2004.17
  45. Lewis SJ, Zammit S, Gunnell D, Smith GD (2005).A Meta- Analysis of the MTHFR C677T Polymorphism and Schizophrenia Risk. Am J Med Genet Part B, 135, 2-4.
  46. Li WD, Chen SQ (2009). Association of methylenetetrahydrofolate reductase C677T polymorphism and breast cancer risk. J Prac Med, 25, 2031-3.
  47. Lin J, Spitz MR, Wang Y, et al (2004). Polymorphisms of folate metabolic genes and susceptibility to bladder cancer.: a case -control study. Carcinogenesis, 25, 1639-47. https://doi.org/10.1093/carcin/bgh175
  48. Lin WY, Chou YC, Wu MH, et al (2004).The MTHFR C677T polymorphism, estrogen exposure and breast cancer risk: a nested case-control study in Taiwan. Anticancer Res, 24, 3863-8.
  49. Liang H, Yan Y, Li T, et al (2013). Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk in Chinese population: a meta-analysis of 22 case-control studies. Tumor Biol, 35, 1695-701.
  50. Liu Y, Zhou LS, Xu XM, et al (2013). Association of dietary intake of folate, vitamin B6 and B12 and MTHFR genotype with breast cancer risk. Asian Pac J Cancer Prev, 14, 5189-92. https://doi.org/10.7314/APJCP.2013.14.9.5189
  51. Ma E, Iwasaki M, Kobayashi M, Kasuga Y, et al (2009). Dietary intake of folate, vitamin B2, vitamin B6, vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case control study in Japan. Nutr Cancer, 61, 447-56. https://doi.org/10.1080/01635580802610123
  52. Mantel N, Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 22, 719-48.
  53. Mat thews RG, Sheppard C, Goulding C (1998) . Methylenetetrahydrofolate reductase and methionine synthase: biochemistry and molecular biology. Eur J Pediatr, 157, 54-9. https://doi.org/10.1007/PL00014305
  54. Mei Q, Zhou D, Gao J, et al (2012).The association between MTHFR 677C>T polymorphism and cervical cancer: evidence from a meta-analysis. BMC Cancer, 12, 467-76. https://doi.org/10.1186/1471-2407-12-467
  55. Mir MM, Dar JA, Dar NA, et al (2008). Combined impact of polymorphism of folate metabolism genes; glutamate carboxypeptidase, methylene tetrahydrofolate reductase and methionine synthase reductase on breast cancer susceptibility in Kashmiri Women. In J Health Sciences, 2, 3-14.
  56. Muhammad A, Malik FA, Mahmood Akhtar K (2012). Mutational analysis of the MTHFR gene in breast cancer patients of Pakistani population. Asian Pac J Cancer Prev, 13, 1599-603. https://doi.org/10.7314/APJCP.2012.13.4.1599
  57. Naushad SM, Reddy CA, Rupasree Y, et al (2011).Cross-talk between one-carbon metabolism and xenobiotic metabolism: implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys, 61, 715-23. https://doi.org/10.1007/s12013-011-9245-x
  58. Neumann AS, Lyons HJ , Shen H, et al (2005). Methylenetetrahydrofolate reductase polymorphisms and risk of squamous cell carcinoma of the head and neck: a case-control analysis. Int J Cancer, 115, 131-6. https://doi.org/10.1002/ijc.20888
  59. Norat T, Aune D, Chan D, Romaguera D (2014). Fruits and Vegetables: Updating the Epidemiologic Evidence for the WCRF/AICR Lifestyle Recommendations for Cancer Prevention. Cancer Treat Res, 159, 35-50. https://doi.org/10.1007/978-3-642-38007-5_3
  60. Ozen F, Erdis E, Sik E, et al (). Germ-line MTHFR C677T, FV H1299R and PAI-1 5G/4G Variations in Breast Carcinoma. Asian Pac J Cancer Prev, 14, 2903-8. https://doi.org/10.7314/APJCP.2013.14.5.2903
  61. Piyathilake CJ, Macakuso M, Johanning GL, et al (2000). Methylenetet rahydrofolate reductase (MTHFR) polymorphism increases the risk of cervical intraepithelial neoplasia. Anticancer Res, 20, 1751-7.
  62. Prasad VV, Wilkhoo H (2011). Association of the functional polymorphism C677T in the methylenetetrahydrofolate reductase gene with colorectal, thyroid, breast, ovarian, and cervical cancers. Onkologie, 34, 422-6. https://doi.org/10.1159/000331131
  63. Qi J, Miao XP, Tan W, et al (2004). Association between genetic polymorphisms in methylenetetrahydrofolate reductase and risk of breast cancer. Zhonghua Zhong Liu Za Zhi, 26, 287-9.
  64. Rai V, Yadav U, Kumar P (2012) . Prevalence of methylenetetrahydrofolate reductase C677T polymorphism in eastern Uttar Pradesh. Indian J Human Genetics, 18, 43-6. https://doi.org/10.4103/0971-6866.96645
  65. Sangrajrang S, Sato Y, Sakamoto H, et al (2010). Genetic polymorphisms in folate and alcohol metabolism and breast cancer risk: a case-control study in Thai women. Breast Cancer Res Treat, 123, 885-93. https://doi.org/10.1007/s10549-010-0804-4
  66. Shen HB, Xu YC, Zheng YX, et al (2001). Polymorphisms of 5,10- Methylenetetrahydrofolate reductase and risk of gastric cancer in a Chinese population a case-control study. Int J Cancer, 95, 332-6. https://doi.org/10.1002/1097-0215(20010920)95:5<332::AID-IJC1058>3.0.CO;2-9
  67. Shrubsole MJ, Gao YT, Cai Q, et al (2004). MTHFR polymorphisms, dietary folate intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev, 13, 190-6. https://doi.org/10.1158/1055-9965.EPI-03-0273
  68. Song C, Xing D, Tan W, et al (2001). Methylenetetrahydrofolate reductase polymorphisms increase risk of esophageal squamous cell carcinoma in Chinese population. Cancer Res, 61, 3272-5.
  69. Song C, Xing D, Tan W, Wei Q, Lin D (2001) . Methylenetetrahydrofolate reductase polymorphisms increase risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Res, 61, 3272-5.
  70. Stern LL, Mason JB, Selhub J, et al (2000). Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev, 9, 849-53.
  71. Sturgeon SR, Schairer C, Grauman D, et al (2004). Trends in breast cancer mortality rates by region of the United States, 1950-1999. Cancer Causes Control, 15, 987-95. https://doi.org/10.1007/s10552-004-1092-2
  72. Suzuki T, Matsuo K, Hirose K, et al (2008). One-carbon metabolism- related gene polymorphisms and risk of breast cancer. Carcinogenesis, 2, 356-62.
  73. Tu YL, Wang SB, Tan XL (2012). MTHFR gene polymorphisms are not involved in pancreatic cancer risk: a meta-analysis. Asian Pac J Cancer Prev, 13, 4627-30. https://doi.org/10.7314/APJCP.2012.13.9.4627
  74. Wagner C (1995). Biochemical role of folate in cellular metabolism. In: Bailey LB (ed) Folate in health and disease. Marcel Dekker Inc, New York, pp 23-42.
  75. Weiwei Z, Liping C, Dequan L (2014). Association between dietary intake of folate, Vitamin B6, B12 & MTHFR, MTR genotype and breast cancer risk. Pak J Med Sci, 30, 106-10.
  76. Wen YY, Yang SJ , Zhang JX, Chen XY (2013) . Methylenetetrahydrofolate reductase genetic polymorphisms and esophageal squamous cell carcinoma susceptibility: a meta-analysis of case-control studies. Asian Pac J Cancer Prev, 14, 21-5. https://doi.org/10.7314/APJCP.2013.14.1.21
  77. Wilcken B, Bamforth F, Li Z, et al (2003). Geographical and ethnic var iat ion of the 677C>T al lele of 5,10-methylenetetrahydrofolate reductase (MTHFR): Findings from over 7000 newborns from 16 areas worldwide. J Med Genet, 40, 619-25. https://doi.org/10.1136/jmg.40.8.619
  78. Wu Y, Yuan X, Zheng H, et al (2010). Methylenetetrahydrofolate reductase gene c677t single nucleotide polymorphisms and susceptibility to breast cancer research. Modern Oncol, 18, 2375-8.
  79. Wu XY, Ni J, Xu WJ, et al (2012). Interactions between MTHFR C677T-A1298C variants and folic acid deficiency affect breast cancer risk in a Chinese population. Asian Pac J Cancer Prev, 13, 2199-06. https://doi.org/10.7314/APJCP.2012.13.5.2199
  80. Yang X, Lippman ME (1999). BRCA1 and BRCA2 in breast cancer. Breast Cancer Res Treat, 54, 1-10. https://doi.org/10.1023/A:1006189906896
  81. Yu CP, Wu MH, Chou YC, Yang T, You SL, Chen CJ, Sun CA: Breast cancer risk associated with multigenotypic poly-Morphisms in folatemetabolizing genes: a nested case-control study in Taiwan. Anticancer Res, 27, 1727-32.
  82. Yuan H, Xu XY, Wang ZL (2009). The relation between polymorphisms of methylenetetrahydrofolate reductase C677T and the risk of breast cancer. J MuDan Jiang Med Univ, 30, 2-4.
  83. Zamora J, Abraira V, Muriel A, et al (2006). Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Medical Research Method, 6, 31. https://doi.org/10.1186/1471-2288-6-31
  84. Zhang SM, Hankinson SE, Hunter DJ, et al (2005). Folate intake and risk of breast cancer characterized by hormone receptor statuss. Cancer Epidemiol Biomarkers Prev, 14, 2004-8. https://doi.org/10.1158/1055-9965.EPI-05-0083
  85. Zhang WB, Zhang JH, Pan ZQ, et al (2012). The MTHFR C677T polymorphism and prostate cancer risk: new findings from a meta-analysis of 7306 cases and 8062 controls. Asian Pac J Cancer Prev, 13, 2597-604. https://doi.org/10.7314/APJCP.2012.13.6.2597
  86. Zintzaras E (2006). Association of methylenetetrahydrofolate reductase (MTHFR) polymorphisms with genetic susceptibility to gastric cancer: a meta-analysis. J Hum Genet, 51, 618-24. https://doi.org/10.1007/s10038-006-0405-6
  87. Zintzaras E, Hadjigeorgiou GM (2004). The role of G196A polymorphism in the brain-derived neurotrophic factor gene in the cause of Parkinson's disease: a meta-analysis. J Hum Genet, 50, 560-6
  88. Zintzaras E (2007). Maternal gene polymorphisms involved in folate metabolism and risk of Down syndrome offspring: a meta-analysis. J Hum Genet, 52, 943-53. https://doi.org/10.1007/s10038-007-0202-x

Cited by

  1. Association of rs1219648 in FGFR2 and rs1042522 in TP53 with Premenopausal Breast Cancer in an Iranian Azeri Population vol.15, pp.18, 2014, https://doi.org/10.7314/APJCP.2014.15.18.7955
  2. MTHFR 677C>T Polymorphism and the Risk of Breast Cancer: Evidence from an Original Study and Pooled Data for 28031 Cases and 31880 Controls vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0120654
  3. Relationship between Genetic Polymorphisms in MTHFR (C677T, A1298C and their Haplotypes) and the Incidence Of Breast Cancer among Jordanian Females - Case-Control Study vol.16, pp.12, 2015, https://doi.org/10.7314/APJCP.2015.16.12.5007
  4. Evaluation of the MTHFR C677T Polymorphism as a Risk Factor for Colorectal Cancer in Asian Populations vol.16, pp.18, 2016, https://doi.org/10.7314/APJCP.2015.16.18.8093
  5. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility vol.31, pp.4, 2016, https://doi.org/10.1007/s11011-016-9815-0
  6. vol.60, pp.4, 2016, https://doi.org/10.1002/mnfr.201500819
  7. Population-level diversity in the association of genetic polymorphisms of one-carbon metabolism with breast cancer risk vol.7, pp.4, 2016, https://doi.org/10.1007/s12687-016-0277-1
  8. (C677T) Gene Polymorphism with Breast Cancer in North India vol.8, pp.1179-299X, 2016, https://doi.org/10.4137/BIC.S40446
  9. Methylenetetrahydrofolate Reductase C677T Polymorphism and Risk for Male Infertility in Asian Population vol.32, pp.3, 2017, https://doi.org/10.1007/s12291-017-0640-y
  10. Distribution of MTHFR C677T Gene Polymorphism in Healthy North Indian Population and an Updated Meta-analysis vol.32, pp.4, 2017, https://doi.org/10.1007/s12291-016-0619-0
  11. Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism and Alzheimer Disease Risk: a Meta-Analysis vol.54, pp.2, 2017, https://doi.org/10.1007/s12035-016-9722-8
  12. Folate and Its Impact on Cancer Risk vol.7, pp.3, 2018, https://doi.org/10.1007/s13668-018-0237-y