DOI QR코드

DOI QR Code

Expression of Hypoxia-inducible Factor Prolyl Hydroxylase 3 HIFPH3 in Human Non-small Cell Lung Cancer (NSCLC) and Its Correlation with Prognosis

  • Chu, Xiao (Department of Thoracic Surgery, The Fifth People's Hospital of Shanghai, Fudan University) ;
  • Zhu, Cheng-Chu (Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province) ;
  • Liu, Hui (Department of Thoracic Surgery, The Fifth People's Hospital of Shanghai, Fudan University) ;
  • Wang, Jiao-Chen (Department of Pathology, Taizhou Hospital of Zhejiang Province)
  • 발행 : 2014.07.30

초록

Purpose: To investigate the expression of hypoxia-inducible factor prolyl hydroxylase 3 (HIFPH3) in non-small cell lung cancer (NSCLC) and explore the correlation of HIFPH3 expression with lymph node metastasis and microvessel density (MVD). Materials and Methods: A total of 73 cases of NSCLC specimens, 24 cases of para-cancerous tissues, and 20 normal pulmonary tissues were collected for HIFPH3 and CD31 immunohistochmical (IHC) study. Microvessel density (MVD) of the NSCLC tissues was also determined based on the expression of CD31. Results: The expression of HIFPH3 in carcinoma tissue was statistically higher than para-cancerous and normal pulmonary tissues (${\chi}^2=48.806$, p<0.05). Compared withthe negative lymph node metastasis group, the lymph node metastasis group showed significantly higher HIFPH3 expression (${\chi}^2=6.300$, p<0.05). The strong HIFPH3+group displayed a significantly higher MVD than weak HIFPH3+ and HIFPH3- groups (p<0.05). No differences in positive HIFPH3 expression were noted regarding the tumor diameter, age, smoking status, gender of NSCLC patients, tumor size, histopathology, or differentiation. Conclusions: HIFPH3 expression in human NSCLC lesions is significantly higher than that in para-cancerous and normal lung tissues and is positively associated with lymph node metastasis and MVD.

키워드

참고문헌

  1. Albelda SM, Muller WA, Buck CA , Newman P J (1991). Molecular and cellular properties of PECAM-1 (endoCAM/ CD31): a novel vascular cell-cell adhesion molecule. J Cell Biol, 114, 1059-68. https://doi.org/10.1083/jcb.114.5.1059
  2. Appelhoff R J, Tian Y-M, Raval R R, et al (2004). Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem, 279, 38458-65. https://doi.org/10.1074/jbc.M406026200
  3. Brahimi-Horn MC, Chiche J, Pouyssegur J (2007). Hypoxia and cancer. Int J Mol Med, 85, 1301-7. https://doi.org/10.1007/s00109-007-0281-3
  4. Brown JM (2002). Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther, 1, 453-8. https://doi.org/10.4161/cbt.1.5.157
  5. Bussolino F, Mantovani A , Persico G (1997). Molecular mechanisms of blood vessel formation. Trends Biochem Sci, 22, 251-6. https://doi.org/10.1016/S0968-0004(97)01074-8
  6. Choi WW, Lewis MM, Lawson D, et al (2005). Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGFfamily gene expression. Modern Pathol, 18, 143-52. https://doi.org/10.1038/modpathol.3800253
  7. Cote ML, Liu M, Bonassi S, et al (2012). Increased risk of lung cancer in individuals with a family history of the disease: a pooled analysis from the International Lung Cancer Consortium. Eur J Cancer, 48, 1957-68. https://doi.org/10.1016/j.ejca.2012.01.038
  8. Couvelard A, Deschamps L, Rebours V, et al (2008). Overexpression of the oxygen sensors PHD-1, PHD-2, PHD-3, and FIH Is associated with tumor aggressiveness in pancreatic endocrine tumors. Clin Cancer Res, 14, 6634-9. https://doi.org/10.1158/1078-0432.CCR-07-5258
  9. D'Angelo G, Duplan E, Boyer N, et al (2003). Hypoxia up-regulates prolyl hydroxylase activity by a feedback mechanism that limits HIF-1 response during reoxygenation. J Biol Chem, 278, 38183-7. https://doi.org/10.1074/jbc.M302244200
  10. Dejana E (2004). Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Bio, 5, 261-70. https://doi.org/10.1038/nrm1357
  11. DeLisser H M, Christofidou-Solomidou M, Strieter R M, et al (1997). Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol, 151, 671.
  12. Ema M, Taya S, Yokotani N, et al (1997). A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor $1{\alpha}$ regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA, 94, 4273-8. https://doi.org/10.1073/pnas.94.9.4273
  13. Fields AC, Cotsonis G, Sexton D, et al (2004). Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Modern Pathol, 17, 1378-85. https://doi.org/10.1038/modpathol.3800203
  14. Fu P, Du F, Chen W, et al (2014). Tanshinone IIA blocks epithelial-mesenchymal transition through HIF-1alpha downregulation, reversing hypoxia-induced chemotherapy resistance in breast cancer cell lines. Oncol Rep, 31, 2561-8.
  15. Le Q-T, Chen E, Salim A, et al (2006). An Evaluation of Tumor Oxygenation and Gene Expression in Patients with Early Stage Non-Small Cell Lung Cancers. Clin Cancer Res, 12, 1507-14. https://doi.org/10.1158/1078-0432.CCR-05-2049
  16. Li C, Lu HJ, Na FF, et al (2013a). Prognostic role of hypoxic inducible factor expression in non-small cell lung cancer: a meta-analysis. Asian Pac J Cancer Prev, 14, 3607-12. https://doi.org/10.7314/APJCP.2013.14.6.3607
  17. Li DW, Dong P, Wang F, et al (2013b). Hypoxia induced multidrug resistance of laryngeal cancer cells via hypoxiainducible factor-1alpha. Asian Pac J Cancer Prev, 14, 4853-8. https://doi.org/10.7314/APJCP.2013.14.8.4853
  18. Li QF, Wang XR, Yang YW , Lin H (2006). Hypoxia upregulates hypoxia inducible factor (HIF)-$3{\alpha}$ expression in lung epithelial cells: characterization and comparison with HIF- $1{\alpha}$. Exp Cell Res, 16, 548-58. https://doi.org/10.1038/sj.cr.7310072
  19. Ma CH, Jiang R, Li JD, et al (2014). Experimental study on residual tumor angiogenesis after cryoablation. Asian Pac J Cancer Prev, 15, 2491-4. https://doi.org/10.7314/APJCP.2014.15.6.2491
  20. Maxwell P, Pugh C , Ratcliffe P (1993). Inducible operation of the erythropoietin 3'enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA, 90, 2423-7. https://doi.org/10.1073/pnas.90.6.2423
  21. Min J H, Yang H, Ivan M, et al (2002). Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science, 296, 1886-9. https://doi.org/10.1126/science.1073440
  22. Muller WA (1995). The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J Leukocyte Biol, 57, 523-8.
  23. Nishii K, Nakaseko C, Jiang M, et al (2013). The soluble form of LR11 protein is a regulator of hypoxia-induced, urokinasetype plasminogen activator receptor (uPAR)-mediated adhesion of immature hematological cells. J Biol Chem, 288, 11877-86. https://doi.org/10.1074/jbc.M112.442491
  24. Pouyssegur J, Dayan F , Mazure N M (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 441, 437-43. https://doi.org/10.1038/nature04871
  25. Raval RR, Lau KW, Tran MG, et al (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol, 25, 5675-86. https://doi.org/10.1128/MCB.25.13.5675-5686.2005
  26. Reedquist KA, Ross E, Koop EA, et al (2000). The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J Cell Biol, 148, 1151-8. https://doi.org/10.1083/jcb.148.6.1151
  27. Samudio I, Fiegl M , Andreeff M (2009). Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res, 69, 2163-6. https://doi.org/10.1158/0008-5472.CAN-08-3722
  28. Schiller JH, Harrington D, Belani CP, et al (2002). Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. New Engl J Med, 346, 92-8. https://doi.org/10.1056/NEJMoa011954
  29. Semenza G L (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 3, 721-32. https://doi.org/10.1038/nrc1187
  30. Shijubo N, Uede T, Kon S, et al (1999). Vascular endothelial growth factor and osteopontin in stage I lung adenocarcinoma. Am J Resp Crit Care, 160, 1269-73. https://doi.org/10.1164/ajrccm.160.4.9807094
  31. Stacker SA, Achen MG, Jussila L, et al (2002). Metastasis: Lymphangiogenesis and cancer metastasis. Nat Rev Cancer, 2, 573-83. https://doi.org/10.1038/nrc863
  32. Swinson DE, Jones JL, Richardson D, et al (2003). Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in non-smallcell lung cancer. J Clin Oncol, 21, 473-82. https://doi.org/10.1200/JCO.2003.11.132
  33. Vaupel P (2008). Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist, 13, 21-6.
  34. Weidner N, Folkman J, Pozza F, et al (1992). Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer I, 84, 1875-87. https://doi.org/10.1093/jnci/84.24.1875
  35. Zhang YC, Jiang G, Gao H, et al (2014). Influence of ionizing radiation on ovarian carcinoma SKOV- 3 xenografts in nude mice under hypoxic conditions. Asian Pac J Cancer Prev, 15, 2353-8. https://doi.org/10.7314/APJCP.2014.15.5.2353