References
- Aklillu E, Carrillo JA, Makonnen E, et al (2003). Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol, 64, 659-69. https://doi.org/10.1124/mol.64.3.659
- Aldrich MC, Selvin S, Hansen HM, et al (2009). CYP1A1/2 haplotypes and lung cancer and assessment of confounding by population stratification. Cancer Res, 69, 2340-8. https://doi.org/10.1158/0008-5472.CAN-08-2576
- Begg CB, Mazumdar M (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50, 1088-101. https://doi.org/10.2307/2533446
- Bartoli A, Xiaodong S, Gatti G, et al (1996). The influence of ethnic factors and gender on CYP1A2-mediated drug disposition: a comparative study in Caucasian and Chinese subjects using phenacetin as a marker substrate. Ther Drug Monit, 18, 586-91. https://doi.org/10.1097/00007691-199610000-00011
- B'chir F, Pavanello S, Knani J, et al (2009). CYP1A2 genetic polymorphisms and adenocarcinoma lung cancer risk in the Tunisian population. Life Sci, 84, 779-84. https://doi.org/10.1016/j.lfs.2009.03.008
- Bozina N, Bradamante V, Lovric M (2009). Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh Hig Rada Toksikol, 60, 217-42.
- Bayram S (2014). Association between RASSF1A Ala133Ser polymorphism and cancer susceptibility: a meta-analysis involving 8,892 subjects. Asian Pac J Cancer Prev, 15, 3691-8. https://doi.org/10.7314/APJCP.2014.15.8.3691
- Chida M, Yokoi T, Fukui T, et al (1999). Detection of three genetic polymorphisms in the 5'-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res, 90, 899-02. https://doi.org/10.1111/j.1349-7006.1999.tb00832.x
- Cui X, Lu X, Hiura M, et al (2012). Association of genotypes of carcinogen-metabolizing enzymes and smoking status with bladder cancer in a Japanese population. Environ. Health Prev, 18, 136-42.
- DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88. https://doi.org/10.1016/0197-2456(86)90046-2
- Davey SG, Egger M(1997). Meta-analyses of randomized controlled trials. Lancet, 350, 1182.
- Deng SQ, Zeng XT, Wang Y, et al (2013). Meta-analysis of the CYP1A2 -163C>A polymorphism and lung cancer risk. Asian Pac J Cancer Prev, 14, 3155-8. https://doi.org/10.7314/APJCP.2013.14.5.3155
- Eaton DL, Gallagher EP, Bammler TK, et al (1995). Role of cytochrome P450 1A2 in chemical carcinogenesis: implications for human variability in expression and enzyme activity. Pharmacogenetics, 5, 259-74. https://doi.org/10.1097/00008571-199510000-00001
- Egger M, Smith DG, Schneider M, et al (1997). Bias in metaanalysis detected by a simple, graphical test. Br Med J, 315, 629-34. https://doi.org/10.1136/bmj.315.7109.629
- Ghotbi R, Christensen M, Roh HK, et al (2007). Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol, 63, 537-46. https://doi.org/10.1007/s00228-007-0288-2
- Gemignani F, Landi S, Szeszenia-Dabrowska N, et al (2007). Development of lung cancer before the age of 50: the role of xenobiotic metabolizing genes. Carcinogenesis, 28, 1287-93. https://doi.org/10.1093/carcin/bgm021
- Gervasini G, Ghotbi R, Aklillu E, et al (2013). Haplotypes in the 5'-untranslated region of the CYP1A2 gene are inversely associated with lung cancer risk but do not correlate with caffeine metabolism. Environ Mol Mutagen, 54, 124-32. https://doi.org/10.1002/em.21747
- Hecht SS (1999). Tobacco smoke carcinogens and lung cancer. Nath J Cancer Inst, 14, 1194-210.
- Hirschhorn JN, Lohmueller K, Byrne E (2002). A comprehensive review of genetic association studies. Genet Med, 4, 45-61. https://doi.org/10.1097/00125817-200203000-00002
- Higgins JP, Thompson SG, Deeks JJ, et al (2003). Measuring inconsistency in meta-analysis. Br Med J, 327, 557-60. https://doi.org/10.1136/bmj.327.7414.557
- Higgins JPT, Green S, Collaboration C, et al (2008). Cochrane handbook for systematic reviews of interventions version 5.0.1. The Cochrane Collaboration. Oxford. 22.
- Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
- Klug S.J (2009). TP53 codon 72 polymorphism and cervical cancer: a pooled analysis of individual data from 49 studies. Lancet Oncol, 10, 772-84. https://doi.org/10.1016/S1470-2045(09)70187-1
- Kukongviriyapan V (2012). Genetic polymorphism of drug metabolizing enzymes in association with risk of bile duct cancer. Asian Pac J Cancer Prev, 13, 7-15.
- Liu WJ, Tan XH, Guo BP, et al (2013). Associations between RASSF1A promoter methylation and NSCLC: a metaanalysis of published data. Asian Pac J Cancer Prev, 14, 3719-24. https://doi.org/10.7314/APJCP.2013.14.6.3719
- Mantel N, Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Natl Cancer Inst, 22, 719-48.
- Miranda CL (2000). Prenyl flavonoids from hops inhibit the metabolic acti vation of the carcinogen ic heterocyclic amine 2-amino-3 -methylimidazo[4, 5-f]quinoline, mediated by cDNA-express ed human CYP1A2. Drug Metab Dispos, 28, 1297-302.
- Ma Z, Guo W, Gong T, et al (2014). CYP1A2 rs762551 polymorphism contributes to risk of lung cancer: a metaanalysis. Tumour Biol, 35, 2253-7. https://doi.org/10.1007/s13277-013-1298-6
- Nebert DW, McKinnon RA, Puga A (1996). Human drugmetabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol, 15, 273-80. https://doi.org/10.1089/dna.1996.15.273
- Nakajima M, Yokoi T, Mizutani M, et al (1999). Genetic polymorphism in the 5'-flanking region of humanCYP1A2 gene: effect on theCYP1A2 inducibility in humans. J Biochem, 125, 803-8. https://doi.org/10.1093/oxfordjournals.jbchem.a022352
- Nebert DW, Dalton TP, Okey AB, et al (2004). Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem, 279, 23847-50. https://doi.org/10.1074/jbc.R400004200
- Nebert DW, Dalton TP (2006). The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer, 6, 947-60. https://doi.org/10.1038/nrc2015
- Osawa Y, Osawa KK, Miyaishi A, et al (2007). NAT2 and CYP1A2 polymorphisms and lung cancer risk in relation to smoking status. Asian Pac J Cancer Prev, 8, 103-8.
- Parkin DM, Bray F, Ferlay J, et al (2001). Estimating the world cancer burden: Globocan. Int J Cancer, 94, 153-6. https://doi.org/10.1002/ijc.1440
- Pavanello S, B'chir F, Pulliero A, et al (2007). Mastrangelo G.Interaction between CYP1A2-T2467DELT polymorphism and smoking in adenocarcinoma and squamous cell carcinoma of the lung. Lung Cancer, 57, 266-72. https://doi.org/10.1016/j.lungcan.2007.04.004
- Pavanello S, Fedeli U, Mastrangelo G, et al (2012). Role of CYP1A2 polymorphisms on lung cancer risk in a prospective study. Cancer Genet, 205, 278-84. https://doi.org/10.1016/j.cancergen.2012.02.004
- Relling MV, Lin JS, Ayers GD, et al (1992). Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther, 52, 643-58. https://doi.org/10.1038/clpt.1992.203
- Shimada T, Yamazaki H, Mimura M, et al (1994). Guengerich Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther, 270, 414-23.
- Strange RC, Fryer AA (1999). The glutathione-S-transferases: influence of polymorphism on cancer susceptibility. IARC Sci Publ, 148, 231-49.
- Sachse C, Brockmoller J, Bauer S, et al (1999). Functional significance of a C->A polymorphism in intron of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol, 47, 445-9.
- Schneider J, Bernges U, Philipp M, et al (2004). CYP1A1 and CYP1B1 polymorphism and lung cancer risk in relation to tobacco smoking. Cancer Geno Prot, 1,189-98.
- Singh AP, Pant MC, Ruwali M, et al (2010). Polymorphism in cytochrome P450 1A2 and their interaction with risk factors in determining risk of squamous cell lung carcinoma in men. Cancer Biomark, 8, 351-9.
- Tsuchiya Y, Nakajima M, Yokoi T (2005). Cytochrome P450- mediated metabolism of estrogens and its regulation in human. Cancer Lett, 227, 115-24. https://doi.org/10.1016/j.canlet.2004.10.007
- Tian Z, Li YL, Zhao L, et al (2013). Role of CYP1A2*1F polymorphism in cancer risk: Evidence from a meta-analysis of 46 case-control studies. Gene, 524,168-74. https://doi.org/10.1016/j.gene.2013.04.038
- Yamazaki H, Shaw PM, Guengerich FP, et al (1998). Role of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem Res Toxicol, 11, 659-65. https://doi.org/10.1021/tx970217f
- Zhong L, Goldberg MS, Patent ME, et al(2000). Exposure to environmental tobacco smoke and the risk of lung cancer: a meta-analysis. Lung Cancer, 27, 3-18. https://doi.org/10.1016/S0169-5002(99)00093-8
- Zienolddiny S, Campa D, Lind H, et al (2008). A comrehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis, 29, 1164-9. https://doi.org/10.1093/carcin/bgn020
- Zhu YM, Liu JW, Xu Q,et al (2013). Pin1 promoter rs2233678 and rs2233679 polymorphisms in cancer: a meta-analysis. Asian Pac J Cancer Prev, 14, 5965-72. https://doi.org/10.7314/APJCP.2013.14.10.5965
- Zhenzhen L, Xianghua L, Ning S, et al (2013). Current evidence on the relationship between three polymorphisms in the CYP1A2 gene and the risk of cancer. Eur J Cancer Prev, 22, 607-19. https://doi.org/10.1097/CEJ.0b013e32835f3bd2
Cited by
- Lack of association between polymorphisms in the CYP1A2 gene and risk of cancer: evidence from meta-analyses vol.16, pp.1, 2016, https://doi.org/10.1186/s12885-016-2096-5