DOI QR코드

DOI QR Code

Review of the Molecular Pathogenesis of Osteosarcoma

  • He, Jin-Peng (Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Hao, Yun (Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Wang, Xiao-Lin (Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Yang, Xiao-Jin (Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Shao, Jing-Fan (Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Guo, Feng-Jin (Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Feng, Jie-Xiong (Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology)
  • Published : 2014.08.15

Abstract

Treating the osteosarcoma (OSA) remains a challenge. Current strategies focus on the primary tumor and have limited efficacy for metastatic OSA. A better understanding of the OSA pathogenesis may provide a rational basis for innovative treatment strategies especially for metastases. The aim of this review is to give an overview of the molecular mechanisms of OSA tumorigenesis, OSA cell proliferation, apoptosis, migration, and chemotherapy resistance, and how improved understanding might contribute to designing a better treatment target for OSA.

Keywords

References

  1. Abarzua F, Sakaguchi M, Takaishi M, et al (2005). Adenovirusmediated overexpression of REIC/Dkk-3 selectively induces apoptosis in human prostate cancer cells through activation of c-Jun-NH2-kinase. Cancer Res, 65, 9617-22. https://doi.org/10.1158/0008-5472.CAN-05-0829
  2. Abramson LP, Stellmach V, Doll JA, et al (2003). Wilms' tumor growth is suppressed by antiangiogenic pigment epithelium-derived factor in a xenograft model. J Pediatr Surg, 38, 336-42. https://doi.org/10.1053/jpsu.2003.50104
  3. Akasbi Y, Arifi S, Lahlaidi K, et al (2012). Renal metastases of a femur osteosarcoma: a case report and a review of the literature. Case Rep Urol, 2012, 2591-3.
  4. Apetoh L, Ghiringhelli F, Tesniere A, et al (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med, 13, 1050-9. https://doi.org/10.1038/nm1622
  5. Bacci G, Rocca M, Salone M, et al (2008). High grade osteosarcoma of the extremities with lung metastases at presentation: treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol, 98, 415-20. https://doi.org/10.1002/jso.21140
  6. Baldini N, Scotlandi K, Barbanti-Brodano G, et al (1995). Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med, 333, 1380-5. https://doi.org/10.1056/NEJM199511233332103
  7. Barker N, Clevers H (2006). Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov, 5, 997-1014. https://doi.org/10.1038/nrd2154
  8. Bielack SS, Carrle D, Hardes J, et al (2008). Bone tumors in adolescents and young adults. Curr Treat Options Oncol, 9, 67-80. https://doi.org/10.1007/s11864-008-0057-1
  9. Broadhead ML, Dass CR, Choong PF (2009). In vitro and in vivo biological activity of PEDF against a range of tumors. Expert Opin Ther Targets, 13, 1429-38. https://doi.org/10.1517/14728220903307475
  10. Brunet A, Bonni A, Zigmond MJ, et al (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857-68. https://doi.org/10.1016/S0092-8674(00)80595-4
  11. Cai D, Latham VM, Jr, Zhang X, et al (2006). Combined depletion of cell cycle and transcriptional cyclin-dependent kinase activities induces apoptosis in cancer cells. Cancer Res, 66, 9270-80. https://doi.org/10.1158/0008-5472.CAN-06-1758
  12. Cardone MH, Roy N, Stennicke HR, et al (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science, 282, 1318-21. https://doi.org/10.1126/science.282.5392.1318
  13. Chan HS, Grogan TM, Haddad G, et al (1997). P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy. J Natl Cancer Inst, 89, 1706-15. https://doi.org/10.1093/jnci/89.22.1706
  14. Chen JK, Taipale J, Cooper MK, et al (2002). Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev, 16, 2743-8. https://doi.org/10.1101/gad.1025302
  15. Chen YN, Sharma SK, Ramsey TM, et al (1999). Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci USA, 96, 4325-9. https://doi.org/10.1073/pnas.96.8.4325
  16. Chou AJ, Gorlick R (2006). Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther, 6, 1075-85. https://doi.org/10.1586/14737140.6.7.1075
  17. Choy E, Hornicek F, MacConaill L, et al (2012). Highthroughput genotyping in osteosarcoma identifies multiple mutations in phosphoinositide-3-kinase and other oncogenes. Cancer, 118, 2905-14. https://doi.org/10.1002/cncr.26617
  18. Chuang JY, Yang WH, Chen HT, et al (2009). CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol, 220, 418-26. https://doi.org/10.1002/jcp.21783
  19. Cooper MK, Porter JA, Young KE, et al (1998). Teratogenmediated inhibition of target tissue response to Shh signaling. Science, 280, 1603-7. https://doi.org/10.1126/science.280.5369.1603
  20. Corbit KC, Aanstad P, Singla V, et al (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437, 1018-21. https://doi.org/10.1038/nature04117
  21. Crescenzi E, Palumbo G, Brady HJ (2005). Roscovitine modulates DNA repair and senescence: implications for combination chemotherapy. Clin Cancer Res, 11, 8158-71. https://doi.org/10.1158/1078-0432.CCR-05-1042
  22. Dawson DW, Volpert OV, Gillis P, et al (1999). Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science, 285, 245-8. https://doi.org/10.1126/science.285.5425.245
  23. De Blasio A, Messina C, Santulli A, et al (2005). Differentiative pathway activated by 3-aminobenzamide, an inhibitor of PARP, in human osteosarcoma MG-63 cells. FEBS Lett, 579, 615-20. https://doi.org/10.1016/j.febslet.2004.12.028
  24. Dieudonne FX, Marion A, Marie PJ, et al (2012). Targeted inhibition of T-cell factor activity promotes syndecan-2 expression and sensitization to doxorubicin in osteosarcoma cells and bone tumors in mice. J Bone Miner Res, 27, 2118-29. https://doi.org/10.1002/jbmr.1650
  25. Dorfman HD, Czerniak B (1995). Bone cancers. Cancer, 75, 203-10. https://doi.org/10.1002/1097-0142(19950101)75:1+<203::AID-CNCR2820751308>3.0.CO;2-V
  26. Ek ET, Dass CR, Choong PF (2006). PEDF: a potential molecular therapeutic target with multiple anti-cancer activities. Trends Mol Med, 12, 497-502. https://doi.org/10.1016/j.molmed.2006.08.009
  27. Ek ET, Dass CR, Choong PF (2006). Pigment epithelium-derived factor: a multimodal tumor inhibitor. Mol Cancer Ther, 5, 1641-6. https://doi.org/10.1158/1535-7163.MCT-06-0107
  28. Ek ET, Dass CR, Contreras KG, et al (2007). Pigment epithelium-derived factor overexpression inhibits orthotopic osteosarcoma growth, angiogenesis and metastasis. Cancer Gene Ther, 14, 616-26. https://doi.org/10.1038/sj.cgt.7701044
  29. Evans DB, Hipskind RA, Bilbe G (1996). Analysis of signaling pathways used by parathyroid hormone to activate the c-fos gene in human SaOS2 osteoblast-like cells. J Bone Miner Res, 11, 1066-74.
  30. Ferrari S, Smeland S, Mercuri M, et al (2005). Neoadjuvant chemotherapy with high-dose Ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma Groups. J Clin Oncol, 23, 8845-52. https://doi.org/10.1200/JCO.2004.00.5785
  31. Flores RJ, Li Y, Yu A, et al (2012). A systems biology approach reveals common metastatic pathways in osteosarcoma. BMC Syst Biol, 6, 50. https://doi.org/10.1186/1752-0509-6-50
  32. Florio M, Hernandez MC, Yang H, et al (1998). Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol Cell Biol, 18, 5435-44.
  33. Foukas AF, Deshmukh NS, Grimer RJ, et al (2002). Stage-IIB osteosarcomas around the knee. A study of MMP-9 in surviving tumour cells. J Bone Joint Surg Br, 84, 706-11. https://doi.org/10.1302/0301-620X.84B5.12512
  34. Fu W, Ma L, Chu B, et al (2011). The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol Cancer Ther, 10, 1018-27. https://doi.org/10.1158/1535-7163.MCT-11-0167
  35. Gong C, Liao H, Wang J, et al (2012). LY294002 induces G0/G1 cell cycle arrest and apoptosis of cancer stem-like cells from human osteosarcoma via down-regulation of PI3K activity. Asian Pac J Cancer Prev, 13, 3103-7. https://doi.org/10.7314/APJCP.2012.13.7.3103
  36. Gorlick R, Huvos AG, Heller G, et al (1999). Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol, 17, 2781-8.
  37. Guo Y, Xie J, Rubin E, et al (2008). Frzb, a secreted Wnt antagonist, decreases growth and invasiveness of fibrosarcoma cells associated with inhibition of Met signaling. Cancer Res, 68, 3350-60. https://doi.org/10.1158/0008-5472.CAN-07-3220
  38. Gurney A, Axelrod F, Bond CJ, et al (2012). Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA, 109, 11717-22. https://doi.org/10.1073/pnas.1120068109
  39. Halin S, Wikstrom P, Rudolfsson SH, et al (2004). Decreased pigment epithelium-derived factor is associated with metastatic phenotype in human and rat prostate tumors. Cancer Res, 64, 5664-71. https://doi.org/10.1158/0008-5472.CAN-04-0835
  40. Harting MT, Blakely ML (2006). Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg, 15, 25-9. https://doi.org/10.1053/j.sempedsurg.2005.11.005
  41. Haydon RC, Deyrup A, Ishikawa A, et al (2002). Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int J Cancer, 102, 338-42. https://doi.org/10.1002/ijc.10719
  42. He ML, Wu Y, Zhao JM, et al (2013). PIK3CA and AKT gene polymorphisms in susceptibility to osteosarcoma in a Chinese population. Asian Pac J Cancer Prev, 14, 5117-22. https://doi.org/10.7314/APJCP.2013.14.9.5117
  43. He Q, Liang CH, Lippard SJ (2000). Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci USA, 97, 5768-72. https://doi.org/10.1073/pnas.100108697
  44. Heikkila P, Teronen O, Hirn MY, et al (2003). Inhibition of matrix metalloproteinase-14 in osteosarcoma cells by clodronate. J Surg Res, 111, 45-52. https://doi.org/10.1016/S0022-4804(03)00086-6
  45. Hengartner MO (2000). The biochemistry of apoptosis. Nature, 407, 770-6. https://doi.org/10.1038/35037710
  46. Himelstein BP, Asada N, Carlton MR, et al (1998). Matrix metalloproteinase-9 (MMP-9) expression in childhood osseous osteosarcoma. Med Pediatr Oncol, 31, 471-4. https://doi.org/10.1002/(SICI)1096-911X(199812)31:6<471::AID-MPO2>3.0.CO;2-M
  47. Hirotsu M, Setoguchi T, Sasaki H, et al (2010). Smoothened as a new therapeutic target for human osteosarcoma. Mol Cancer, 9, 5. https://doi.org/10.1186/1476-4598-9-5
  48. Hoeflich KP, Luo J, Rubie EA, et al (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NFkappaB activation. Nature, 406, 86-90. https://doi.org/10.1038/35017574
  49. Hsieh JC, Kodjabachian L, Rebbert ML, et al (1999). A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature, 398, 431-6. https://doi.org/10.1038/18899
  50. Hu B, Mitra J, van den Heuvel S, et al (2001). S and G2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol Cell Biol, 21, 2755-66. https://doi.org/10.1128/MCB.21.8.2755-2766.2001
  51. Huang CY, Fong YC, Lee CY, et al (2009). CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol, 77, 794-803. https://doi.org/10.1016/j.bcp.2008.11.014
  52. Huang J, Liu K, Yu Y, et al (2012). Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma. Autophagy, 8, 275-7. https://doi.org/10.4161/auto.8.2.18940
  53. Huang J, Ni J, Liu K, et al (2012). HMGB1 promotes drug resistance in osteosarcoma. Cancer Res, 72, 230-8. https://doi.org/10.1158/0008-5472.CAN-11-2001
  54. Huangfu D, Anderson KV (2005). Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA, 102, 11325-30. https://doi.org/10.1073/pnas.0505328102
  55. Huangfu D, Liu A, Rakeman AS, et al (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426, 83-7. https://doi.org/10.1038/nature02061
  56. Hughes DP (2009). Strategies for the targeted delivery of therapeutics for osteosarcoma. Expert Opin Drug Deliv, 6, 1311-21. https://doi.org/10.1517/17425240903280422
  57. Iavarone A, Garg P, Lasorella A, et al (1994). The helix-loophelix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev, 8, 1270-84. https://doi.org/10.1101/gad.8.11.1270
  58. Itoh Y (2006). MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life, 58, 589-96. https://doi.org/10.1080/15216540600962818
  59. Jin J, Cai L, Liu ZM, et al (2013). miRNA-218 inhibits osteosarcoma cell migration and invasion by downregulating of TIAM1, MMP2 and MMP9. Asian Pac J Cancer Prev, 14, 3681-4. https://doi.org/10.7314/APJCP.2013.14.6.3681
  60. Jin S, Pang RP, Shen JN, et al (2007). Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells. Apoptosis, 12, 1317-26. https://doi.org/10.1007/s10495-007-0062-z
  61. Jung Y, Lippard SJ (2003). Nature of full-length HMGB1 binding to cisplatin-modified DNA. Biochemistry, 42, 2664-71. https://doi.org/10.1021/bi026972w
  62. Kager L, Zoubek A, Potschger U, et al (2003). Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol, 21, 2011-8. https://doi.org/10.1200/JCO.2003.08.132
  63. Kansara M, Thomas DM (2007). Molecular pathogenesis of osteosarcoma. DNA Cell Biol, 26, 1-18. https://doi.org/10.1089/dna.2006.0505
  64. Kartalou M, Essigmann JM (2001). Recognition of cisplatin adducts by cellular proteins. Mutat Res, 478, 1-21. https://doi.org/10.1016/S0027-5107(01)00142-7
  65. Kasparkova J, Delalande O, Stros M, et al (2003). Recognition of DNA interstrand cross-link of antitumor cisplatin by HMGB1 protein. Biochemistry, 42, 1234-44. https://doi.org/10.1021/bi026695t
  66. Kawano Y, Kypta R (2003). Secreted antagonists of the Wnt signalling pathway. J Cell Sci, 116, 2627-34. https://doi.org/10.1242/jcs.00623
  67. Kido A, Tsutsumi M, Iki K, et al (1999). Overexpression of matrix metalloproteinase (MMP)-9 correlates with metastatic potency of spontaneous and 4-hydroxyaminoquinoline 1-oxide (4-HAQO)-induced transplantable osteosarcomas in rats. Cancer Lett, 137, 209-16. https://doi.org/10.1016/S0304-3835(98)00368-1
  68. Kim MR, Zhou L, Park BH, et al (2011). Induction of G (2)/M arrest and apoptosis by sulforaphane in human osteosarcoma U2-OS cells. Mol Med Rep, 4, 929-34.
  69. Kim SJ, Choi JA, Lee SH, et al (2004). Imaging findings of extrapulmonary metastases of osteosarcoma. Clin Imaging, 28, 291-300. https://doi.org/10.1016/S0899-7071(03)00206-7
  70. Kim SM, Lee H, Park YS, et al (2012). ERK5 regulates invasiveness of osteosarcoma by inducing MMP-9. J Orthop Res, 30, 1040-4. https://doi.org/10.1002/jor.22025
  71. Koyama T, Suzuki H, Imakiire A, et al (2004). Id3-mediated enhancement of cisplatin-induced apoptosis in a sarcoma cell line MG-63. Anticancer Res, 24, 1519-24.
  72. Kulbe H, Levinson NR, Balkwill F, et al (2004). The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol, 48, 489-96. https://doi.org/10.1387/ijdb.041814hk
  73. Lambert LA, Qiao N, Hunt KK, et al (2008). Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res, 68, 7966-74. https://doi.org/10.1158/0008-5472.CAN-08-1333
  74. Lengner CJ, Steinman HA, Gagnon J, et al (2006). Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol, 172, 909-21. https://doi.org/10.1083/jcb.200508130
  75. Lin YC, You L, Xu Z, et al (2006). Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun, 341, 635-40. https://doi.org/10.1016/j.bbrc.2005.12.220
  76. Liu B, Shi ZL, Feng J, et al (2008). Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt. Cell Biol Int, 32, 494-501. https://doi.org/10.1016/j.cellbi.2007.10.008
  77. Longhi A, Errani C, De Paolis M, et al (2006). Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev, 32, 423-36. https://doi.org/10.1016/j.ctrv.2006.05.005
  78. Lu B, Nakamura T, Inouye K, et al (2012). Novel role of PKR in inflammasome activation and HMGB1 release. Nature, 488, 670-4. https://doi.org/10.1038/nature11290
  79. Luboshits G, Shina S, Kaplan O, et al (1999). Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res, 59, 4681-7.
  80. Luk F, Yu Y, Walsh WR, et al (2011). IGF1R-targeted therapy and its enhancement of doxorubicin chemosensitivity in human osteosarcoma cell lines. Cancer Invest, 29, 521-32. https://doi.org/10.3109/07357907.2011.606252
  81. Ma Q, Zhou Y, Ma B, et al (2012). The clinical value of CXCR4, HER2 and CD44 in human osteosarcoma: A pilot study. Oncol Lett, 3, 797-801.
  82. Maik-Rachline G, Shaltiel S, Seger R (2005). Extracellular phosphorylation converts pigment epithelium-derived factor from a neurotrophic to an antiangiogenic factor. Blood, 105, 670-8. https://doi.org/10.1182/blood-2004-04-1569
  83. Mankin HJ, Hornicek FJ, Rosenberg AE, et al (2004). Survival data for 648 patients with osteosarcoma treated at one institution. Clin Orthop Relat Res, 429 286-91. https://doi.org/10.1097/01.blo.0000145991.65770.e6
  84. Marion A, Dieudonne FX, Patino-Garcia A, et al (2012). Calpain-6 is an endothelin-1 signaling dependent protective factor in chemoresistant osteosarcoma. Int J Cancer, 130, 2514-25. https://doi.org/10.1002/ijc.26246
  85. Matsubara K, Fukushima S, Akane A, et al (1992). Increased urinary morphine, codeine and tetrahydropapaveroline in parkinsonian patient undergoing L- 3 , 4-dihydroxyphenylalanine therapy: a possible biosynthetic pathway of morphine from L-3, 4-dihydroxyphenylalanine in humans. J Pharmacol Exp Ther, 260, 974-8.
  86. Matsumoto K, Ishikawa H, Nishimura D, et al (2004). Antiangiogenic property of pigment epithelium-derived factor in hepatocellular carcinoma. Hepatology, 40, 252-9. https://doi.org/10.1002/hep.20259
  87. McNeill H, Woodgett JR (2010). When pathways collide: collaboration and connivance among signalling proteins in development. Nat Rev Mol Cell Biol, 11, 404-13. https://doi.org/10.1038/nrm2902
  88. Messerschmitt PJ, Garcia RM, Abdul-Karim FW, et al (2009). Osteosarcoma. J Am Acad Orthop Surg, 17, 515-27.
  89. Meyer B, Murua Escobar H, Hauke S, et al (2004). Expression pattern of the HMGB1 gene in sarcomas of the dog. Anticancer Res, 24, 707-10.
  90. Mialou V, Philip T, Kalifa C, et al (2005). Metastatic osteosarcoma at diagnosis: prognostic factors and longterm outcome-the French pediatric experience. Cancer, 104, 1100-9. https://doi.org/10.1002/cncr.21263
  91. Mirabello L, Troisi RJ, Savage SA (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer, 115, 1531-43. https://doi.org/10.1002/cncr.24121
  92. Mohseny AB, Xiao W, Carvalho R, et al (2012). An osteosarcoma zebrafish model implicates Mmp-19 and Ets-1 as well as reduced host immune response in angiogenesis and migration. J Pathol, 227, 245-53. https://doi.org/10.1002/path.3998
  93. Moll UM, Zaika A (2001). Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett, 493, 65-9. https://doi.org/10.1016/S0014-5793(01)02284-0
  94. Murray AR, Ma JX (2010). PEDF as a treatment for cervical cancer. Cancer Biol Ther, 9, 975-7. https://doi.org/10.4161/cbt.9.12.11985
  95. Nagao H, Ijiri K, Hirotsu M, et al (2011). Role of GLI2 in the growth of human osteosarcoma. J Pathol, 224, 169-79. https://doi.org/10.1002/path.2880
  96. Nelson AR, Fingleton B, Rothenberg ML, et al (2000). Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 18, 1135-49.
  97. Ouellet V, Siegel PM (2012). CCN3 modulates bone turnover and is a novel regulator of skeletal metastasis. J Cell Commun Signal, 6, 73-85. https://doi.org/10.1007/s12079-012-0161-7
  98. Pakos EE, Ioannidis JP (2003). The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer, 98, 581-9. https://doi.org/10.1002/cncr.11546
  99. Perez J, Bardin C, Rigal C, et al (2011). Anti-MDR1 siRNA restores chemosensitivity in chemoresistant breast carcinoma and osteosarcoma cell lines. Anticancer Res, 31, 2813-20.
  100. Pil PM, Lippard SJ (1992). Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science, 256, 234-7. https://doi.org/10.1126/science.1566071
  101. Rasola A, Sciacovelli M, Chiara F, et al (2010). Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci USA, 107, 726-31. https://doi.org/10.1073/pnas.0912742107
  102. Rengan R, Mick R, Pryma D, et al (2012). A phase I trial of the HIV protease inhibitor nelfinavir with concurrent chemoradiotherapy for unresectable stage IIIA/IIIB nonsmall cell lung cancer: a report of toxicities and clinical response. J Thorac Oncol, 7, 709-15. https://doi.org/10.1097/JTO.0b013e3182435aa6
  103. Ritter J, Bielack SS (2010). Osteosarcoma. Ann Oncol, 21, 320-5.
  104. Romashkova JA, Makarov SS (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 401, 86-90. https://doi.org/10.1038/43474
  105. Roundhill EA, Burchill SA (2012). Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria. Br J Cancer, 106, 1224-33. https://doi.org/10.1038/bjc.2012.40
  106. Roy HK, Olusola BF, Clemens DL, et al (2002). AKT protooncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis, 23, 201-5. https://doi.org/10.1093/carcin/23.1.201
  107. Rubin EM, Guo Y, Tu K, et al (2010). Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol Cancer Ther, 9, 731-41. https://doi.org/10.1158/1535-7163.MCT-09-0147
  108. Rubin LL, de Sauvage FJ (2006). Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov, 5, 1026-33. https://doi.org/10.1038/nrd2086
  109. Ruiz i Altaba A (1997). Catching a Gli-mpse of Hedgehog. Cell, 90, 193-6. https://doi.org/10.1016/S0092-8674(00)80325-6
  110. Santamarina M, Hernandez G, Zalvide J (2008). CDK redundancy guarantees cell cycle progression in Rb-negative tumor cells independently of their p16 status. Cell Cycle, 7, 1962-72. https://doi.org/10.4161/cc.7.13.6071
  111. Sasaki K, Hitora T, Nakamura O, et al (2011). The role of MAPK pathway in bone and soft tissue tumors. Anticancer Res, 31, 549-53.
  112. Schwartz CL, Gorlick R, Teot L, et al (2007). Multiple drug resistance in osteogenic sarcoma: INT0133 from the Children's Oncology Group. J Clin Oncol, 25, 2057-62. https://doi.org/10.1200/JCO.2006.07.7776
  113. Scrace SF, Kierstan P, Borgognoni J, et al (2008). Transient treatment with CDK inhibitors eliminates proliferative potential even when their abilities to evoke apoptosis and DNA damage are blocked. Cell Cycle, 7, 3898-907. https://doi.org/10.4161/cc.7.24.7345
  114. Senderowicz AM (2003). Small-molecule cyclin-dependent kinase modulators. Oncogene, 22, 6609-20. https://doi.org/10.1038/sj.onc.1206954
  115. Serra M, Picci P, Ferrari S, et al (2007). Prognostic value of P-glycoprotein in high-grade osteosarcoma. J Clin Oncol, 25, 4858-60. https://doi.org/10.1200/JCO.2007.13.0534
  116. Serra M, Scotlandi K, Reverter-Branchat G, et al (2003). Value of P-glycoprotein and clinicopathologic factors as the basis for new treatment strategies in high-grade osteosarcoma of the extremities. J Clin Oncol, 21, 536-42. https://doi.org/10.1200/JCO.2003.03.144
  117. Shida D, Takabe K, Kapitonov D, et al (2008). Targeting SphK1 as a new strategy against cancer. Curr Drug Targets, 9, 662-73. https://doi.org/10.2174/138945008785132402
  118. Smeland S, Muller C, Alvegard TA, et al (2003). Scandinavian Sarcoma Group Osteosarcoma Study SSG VIII: prognostic factors for outcome and the role of replacement salvage chemotherapy for poor histological responders. Eur J Cancer, 39, 488-94. https://doi.org/10.1016/S0959-8049(02)00747-5
  119. Strasser A, O'Connor L, Dixit VM (2000). Apoptosis signaling. Annu Rev Biochem, 69, 217-45. https://doi.org/10.1146/annurev.biochem.69.1.217
  120. T L, L FH, Ak R, Knigge U, U FR (2014). Primary hyperparathyroidism in young people. When should we perform genetic testing for multiple endocrine neoplasia 1 (MEN-1)? J Clin Endocrinol Metab, (in press).
  121. Taipale J, Cooper MK, Maiti T, et al (2002). Patched acts catalytically to suppress the activity of Smoothened. Nature, 418, 892-7. https://doi.org/10.1038/nature00989
  122. Tang QL, Xie XB, Wang J, et al (2012). Glycogen synthase kinase-3beta, NF-kappaB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Inst, 104, 749-63. https://doi.org/10.1093/jnci/djs210
  123. Teo H, Ghosh S, Luesch H, et al (2010). Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression. Nat Cell Biol, 12, 758-67. https://doi.org/10.1038/ncb2080
  124. Uchibori M, Nishida Y, Nagasaka T, et al (2006). Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma. Int J Oncol, 28, 33-42.
  125. Uehara H, Miyamoto M, Kato K, et al (2004). Expression of pigment epithelium-derived factor decreases liver metastasis and correlates with favorable prognosis for patients with ductal pancreatic adenocarcinoma. Cancer Res, 64, 3533-7. https://doi.org/10.1158/0008-5472.CAN-03-3725
  126. Vadas M, Xia P, McCaughan G, et al (2008). The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction? Biochim Biophys Acta, 1781, 442-7. https://doi.org/10.1016/j.bbalip.2008.06.007
  127. van Lohuizen M, Verbeek S, Scheijen B, et al (1991). Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell, 65, 737-52. https://doi.org/10.1016/0092-8674(91)90382-9
  128. Vivanco I, Sawyers CL (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2, 489-501. https://doi.org/10.1038/nrc839
  129. Wang SW, Wu HH, Liu SC, et al (2012). CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma. PLoS One, 7, e35101. https://doi.org/10.1371/journal.pone.0035101
  130. Weeraratna AT, Jiang Y, Hostetter G, et al (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 1, 279-88. https://doi.org/10.1016/S1535-6108(02)00045-4
  131. Whelan JS, Jinks RC, McTiernan A, et al (2012). Survival from high-grade localised extremity osteosarcoma: combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials. Ann Oncol, 23, 1607-16. https://doi.org/10.1093/annonc/mdr491
  132. Wissmann C, Wild PJ, Kaiser S, et al (2003). WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol, 201, 204-12. https://doi.org/10.1002/path.1449
  133. Wolf R, Wolf RF, Hoekstra HJ (1999). Recurrent, multiple, calcified soft tissue metastases from osteogenic sarcoma without pulmonary involvement. Skeletal Radiol, 28, 710-3. https://doi.org/10.1007/s002560050578
  134. Woodgett JR (2012). Can a two-faced kinase be exploited for osteosarcoma? J Natl Cancer Inst, 104, 722-3. https://doi.org/10.1093/jnci/djs223
  135. Wu B, Crampton SP, Hughes CC (2007). Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity, 26, 227-39. https://doi.org/10.1016/j.immuni.2006.12.007
  136. Wu Z, Min L, Chen D, et al (2011). Overexpression of BMI-1 promotes cell growth and resistance to cisplatin treatment in osteosarcoma. PLoS One, 6, e14648. https://doi.org/10.1371/journal.pone.0014648
  137. Yao C, Wu S, Li D, et al (2012). Co-administration phenoxodiol with doxorubicin synergistically inhibit the activity of sphingosine kinase-1 (SphK1), a potential oncogene of osteosarcoma, to suppress osteosarcoma cell growth both in vivo and in vitro. Mol Oncol, 6, 392-404. https://doi.org/10.1016/j.molonc.2012.04.002
  138. Yu W, Shun MC, Anderson K, et al (2006). alpha-TEA inhibits survival and enhances death pathways in cisplatin sensitive and resistant human ovarian cancer cells. Apoptosis, 11, 1813-23. https://doi.org/10.1007/s10495-006-9234-5
  139. Yu Y, Luk F, Yang JL, et al (2011). Ras/Raf/MEK/ERK pathway is associated with lung metastasis of osteosarcoma in an orthotopic mouse model. Anticancer Res, 31, 1147-52.
  140. Zamble DB, Mu D, Reardon JT, et al (1996). Repair of cisplatin--DNA adducts by the mammalian excision nuclease. Biochemistry, 35, 10004-13. https://doi.org/10.1021/bi960453+
  141. Zhang F, Chen A, Chen J, et al (2011). SiRNA-mediated silencing of beta-catenin suppresses invasion and chemosensitivity to doxorubicin in MG-63 osteosarcoma cells. Asian Pac J Cancer Prev, 12, 239-45.
  142. Zi X, Guo Y, Simoneau AR, et al (2005). Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res, 65, 9762-70. https://doi.org/10.1158/0008-5472.CAN-05-0103

Cited by

  1. Analysis of Gene Expression in Cyclooxygenase-2-Overexpressed Human Osteosarcoma Cell Lines vol.12, pp.4, 2014, https://doi.org/10.5808/GI.2014.12.4.247
  2. Gemcitabine for the Treatment of Patients with Osteosarcoma vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.7159
  3. miR-9 Modulates Osteosarcoma Cell Growth by Targeting the GCIP Tumor Suppressor vol.16, pp.11, 2015, https://doi.org/10.7314/APJCP.2015.16.11.4509
  4. Quantitative Assessment of the Association between ABC Polymorphisms and Osteosarcoma Response: a Meta-analysis vol.16, pp.11, 2015, https://doi.org/10.7314/APJCP.2015.16.11.4659
  5. pathway is associated with Advanced Ovarian Cancer in Saudi Patients vol.16, pp.14, 2015, https://doi.org/10.7314/APJCP.2015.16.14.5807
  6. Short hairpin RNA (shRNA) of type 2 interleukin-1 receptor (IL1R2) inhibits the proliferation of human osteosarcoma U-2 OS cells vol.32, pp.1, 2015, https://doi.org/10.1007/s12032-014-0364-2
  7. DEC2 expression is positively correlated with HIF-1 activation and the invasiveness of human osteosarcomas vol.34, pp.1, 2015, https://doi.org/10.1186/s13046-015-0135-8
  8. miR-221 increases osteosarcoma cell proliferation, invasion and migration partly through the downregulation of PTEN vol.36, pp.5, 2015, https://doi.org/10.3892/ijmm.2015.2352
  9. miR-155 promotes the growth of osteosarcoma in a HBP1-dependent mechanism vol.403, pp.1-2, 2015, https://doi.org/10.1007/s11010-015-2344-z
  10. Combination of Hedgehog inhibitors and standard anticancer agents synergistically prevent osteosarcoma growth vol.48, pp.1, 2016, https://doi.org/10.3892/ijo.2015.3236
  11. MicroRNA-33a-5p suppresses growth of osteosarcoma cells and is downregulated in human osteosarcoma pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.3503
  12. The associations of vascular endothelial growth factor gene polymorphisms with susceptibility to osteosarcoma: evidence from a meta-analysis vol.26, pp.5, 2016, https://doi.org/10.1111/ecc.12513
  13. Tumstatin induces apoptosis and stimulates phosphorylation of p65NF-κB in human osteoblastic osteosarcoma Saos-2 cells vol.35, pp.6, 2016, https://doi.org/10.3892/or.2016.4762
  14. Inhibition of casein kinase 2 prevents growth of human osteosarcoma vol.37, pp.2, 2017, https://doi.org/10.3892/or.2016.5310
  15. Mesenchymal stem cells: From stem cells to sarcomas vol.40, pp.6, 2016, https://doi.org/10.1002/cbin.10603
  16. Molecular mechanisms and microRNAs in osteosarcoma pathogenesis vol.81, pp.4, 2016, https://doi.org/10.1134/S0006297916040027
  17. Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9 vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0180558
  18. Genetic polymorphisms in ERCC1 and ERCC2 genes are associated with response to chemotherapy in osteosarcoma patients among Chinese population: a meta-analysis vol.15, pp.1, 2017, https://doi.org/10.1186/s12957-017-1142-3
  19. Curcumin inhibits hypoxia-induced proliferation and invasion of MG-63 osteosarcoma cells via downregulating Notch1 vol.15, pp.4, 2017, https://doi.org/10.3892/mmr.2017.6159
  20. Overexpression of miR-214 promotes the progression of human osteosarcoma by regulating the Wnt/β-catenin signaling pathway vol.15, pp.4, 2017, https://doi.org/10.3892/mmr.2017.6203
  21. SLC3A2 is upregulated in human osteosarcoma and promotes tumor growth through the PI3K/Akt signaling pathway vol.37, pp.5, 2017, https://doi.org/10.3892/or.2017.5530
  22. LDOC1 regulates Wnt5a expression and osteosarcoma cell metastasis and is correlated with the survival of osteosarcoma patients vol.39, pp.2, 2017, https://doi.org/10.1177/1010428317691188
  23. Anticancer efficacy of the hypoxia-activated prodrug evofosfamide is enhanced in combination with proapoptotic receptor agonists against osteosarcoma vol.6, pp.9, 2017, https://doi.org/10.1002/cam4.1115
  24. Biological analysis of cancer specific microRNAs on function modeling in osteosarcoma vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05819-7
  25. In vitro effect of microRNA-107 targeting Dkk-1 by regulation of Wnt/β-catenin signaling pathway in osteosarcoma vol.96, pp.27, 2017, https://doi.org/10.1097/MD.0000000000007245
  26. MicroRNA-26a inhibits osteosarcoma cell proliferation by targeting IGF-1 vol.3, pp.1, 2015, https://doi.org/10.1038/boneres.2015.33
  27. Identification of candidate drugs for the treatment of metastatic osteosarcoma through a subpathway analysis method vol.13, pp.6, 2017, https://doi.org/10.3892/ol.2017.5953
  28. miR-187 inhibits tumor growth and invasion by directly targeting MAPK12 in osteosarcoma vol.14, pp.2, 2017, https://doi.org/10.3892/etm.2017.4624
  29. Relevance of 3d culture systems to study osteosarcoma environment vol.37, pp.1, 2018, https://doi.org/10.1186/s13046-017-0663-5
  30. Green synthesis of silver nanoparticles toward bio and medical applications: review study pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1517769
  31. MicroRNA-645 promotes metastasis of osteosarcoma via targeting tumor suppressor NM23 nucleoside diphosphate kinase 2 pp.03051870, 2018, https://doi.org/10.1111/1440-1681.13006
  32. LncRNA MEG3 negatively modified osteosarcoma development through regulation of miR-361-5p and FoxM1 pp.00219541, 2019, https://doi.org/10.1002/jcp.28026