DOI QR코드

DOI QR Code

Path Loss Model with Multiple-Antenna and Doppler Shift for High Speed Railroad Communication

다중 안테나와 Doppler Shift를 고려한 고속 철도의 경로 손실 모델

  • Received : 2014.04.04
  • Accepted : 2014.07.24
  • Published : 2014.08.31

Abstract

In this paper, we propose a path loss model with the multiple antennas and doppler shift for high speed railroad communication. Path loss model is very important in order to design consider diverse characteristic in high-speed train communication. Currently wireless communication systems use the multiple antennas in order to improve the channel capacity or diversity gain. However, until recently, many researches on path loss model only consider geographical environment between the transmitter and the receiver. There is no study about path loss model considering diversity effect and doppler shift. In order to make average residuals considering doppler shift we use tuned free space path loss model which is utilized for measurement results at high speed railroad. The environment of high speed rail is mostly at viaduct and flatland over than 50 percent. And in order to make average residuals considering multiple antenna we use theoretical estimation of diversity gain with MRC scheme. proposed model predict loss of received signal by estimating average residuals between diversity effect and doppler shift.

본 논문에서는 다중 안테나를 사용한 고속철도 환경의 경로 손실 모델을 제안 하였다. 기본적으로 고속 철도의 모든 특성들 사이에서, 경로 손실(path loss)는 고속 철도 통신 시스템의 설계에서 매우 중요하다. 현재까지 진행되어진 연구 중 대다수는 경로 손실 모델은 송신단과 수신단 사이이의 지리적 환경을 고려한 모델은 많았지만 다중 안테나를 사용한 시스템과 Doppler effect를 고려한 환경에서의 연구는 상대적으로 적게 고려되어 왔다. Doppler shift에 평균 residuals고려하는 모델링을 위해 사용되는 조정된 자유 공간 손실 모델(tuned free-space path loss model)은 최대 이동 속도가 340km인 ZhengZhou - Xi'an 간 전용선에서의 측정값을 활용하고 다중 안테나의 평균 residuals은 MRC 기법을 사용했을 시의 이론적 계산값을 다이버시티 이득을 활용한다. 통신 시스템상의 두 가지 요인으로 발생하는 평균 residuals을 추정하여 제안하는 모델은 다중 안테나를 사용한 시스템에서 수신 신호의 손실을 예측한다.

Keywords

References

  1. Y. Okumura, E. Ohmori, T. Kawano, and K. Fukuda, "Field strength and its variability in VHF and UHF land-mobile service," Rev. Elec. Commun. Lab., vol. 16, no. 9-10, pp. 825-873, 1968.
  2. M. Hata, "Empirical formula for propagation loss in land mobile radio services," IEEE Trans. Veh. Technol., vol. 29, no. 3, pp. 317-325, 1980. https://doi.org/10.1109/T-VT.1980.23859
  3. J. V. Traveset, G. Caire, E. Biglieri, and G. Taricco, "Impact of diversity reception on fading channels with coded modulation-Part I: Coherent detection," IEEE Trans. Commun., vol. 45, no. 5, pp. 563-572, May 1997. https://doi.org/10.1109/26.592556
  4. V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communication: Performance critertion and code construction," IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998. https://doi.org/10.1109/18.661517
  5. T. K. Y. Lo, "Maximum ratio transmission," IEEE Trans. Commun., vol. 47, no. 10, pp. 1458-1461, Oct. 1999. https://doi.org/10.1109/26.795811
  6. A. Amornthipparat, H. Shirai, K. Yonezawa, T. Inoue, and Y. Nakamura, "Estimation of high frequency NLOS path loss in street-cell environment," Int. Conf. Commun. Electron.(ICCE 2008), pp. 336-340, Hoi an, Jun. 2008.
  7. I. Schneider, F. Lambrecht, and A. Baier, "Enhancement of the okumura hata propagation model using detailed morphological and building data," IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun.(PIMRC), vol. 1, pp. 34-38, Taipei, Oct. 1996.
  8. J. Turkka and M. Renfors, "Path loss measurements for a non-line-of sight mobile-to-mobile environment," Int. Conf. ITS Telecommun., pp. 274-278, Phuket, Oct. 2008.
  9. H. Wei, Z. Zhong, K. Guan, and B. Ai, "Path loss models in viaduct and plain scenarios of the high-speed railway," Int. ICST Conf. CHINACOM, pp. 1-5, Beijing, Aug. 2010.
  10. M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels - A Unified Approach to Performance Analysis, 1st Ed., NY: Wiley, 2000.
  11. P. J. Lee, "Computation of the bit error rate of coherent M-ary PSK with gray code bit mapping," IEEE Trans. Commun., vol. COM-34, no. 5, pp. 488-491, 1986.
  12. J. Bok and H.-G. Ryu, "Path loss model considering doppler shift for high speed railroad communication," Int. Conf. Advanced Commun. Technol.(ICACT 2014), PyeongChang, Korea, Feb. 2014.
  13. Y. S. Cho, J. Kim, and W. Y. Yang, MIMO-OFMD wireless communications with MATLAB, 1st Ed., NY: John Wiley & Sons, 2008.