DOI QR코드

DOI QR Code

Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study

  • Ma, Gang (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University) ;
  • Chang, Xiao-Lin (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University) ;
  • Zhou, Wei (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University) ;
  • Ng, Tang-Tat (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University)
  • 투고 : 2014.02.23
  • 심사 : 2014.06.05
  • 발행 : 2014.09.25

초록

The study of the mechanical behavior of rockfill materials under three-dimensional loading conditions is a current research focus area. This paper presents a microscale numerical study of rockfill deformation and strength characteristics using the Combined Finite-Discrete Element Method (FDEM). Two features unique to this study are the consideration of irregular particle shapes and particle crushability. A polydisperse assembly of irregular polyhedra was prepared to reproduce the mechanical behavior of rockfill materials subjected to axial compression at a constant mean stress for a range of intermediate principal stress ratios in the interval [0, 1]. The simulation results, including the stress-strain characteristics, relationship between principal strains, and principal deviator strains are discussed. The stress-dilatancy behavior is described using a linear dilatancy equation with its material constants varying with the intermediate principal stress ratio. The failure surface in the principal stress space and its traces in the deviatoric and meridian plane are also presented. The modified Lade-Duncan criterion most closely describes the stress points at failure.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Alonso, E.E., Iturralde, E.F.O. and Romero, E.E. (2007), "Dilatancy of coarse granular aggregates", Exp. Unsatur. Soil Mech., 112, 119-135. https://doi.org/10.1007/3-540-69873-6_11
  2. Barreto, D. and O'Sullivan, C. (2012), "The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions", Granul. Matter., 14(4), 505-521. https://doi.org/10.1007/s10035-012-0354-z
  3. Chang, C.S. and Yin, Z.Y. (2009), "Modeling stress-dilatancy for sand under compression and extension loading conditions", J. Eng. Mech., 136(6), 777-786.
  4. Cheng, Z.L., Zuo, Y.Z. and Ding, H.S. (2010), "Wetting characteristics of coarse- grained materials", Chin. J. Geotech. Eng., 32(2), 243-247.
  5. Cui, Y.J. and Delage, P. (1996), "Yielding and plastic behaviour of an unsaturated compacted silt", Geotechnique, 46(2), 291-311. https://doi.org/10.1680/geot.1996.46.2.291
  6. Cundall, P.A. and Hart, R.D. (1992), "Numerical modelling of discontinua", Eng. Computation., 9(2), 101-113. https://doi.org/10.1108/eb023851
  7. Gajo, A. and Wood, M. (1999), "Severn-trent sand: A kinematic-hardening constitutive model: The q-p formulation", Geotechnique, 49(5), 595-614. https://doi.org/10.1680/geot.1999.49.5.595
  8. Jefferies, M.G. (1993), "Nor-Sand: A simle critical state model for sand", Geotechnique, 43(1), 91-103. https://doi.org/10.1680/geot.1993.43.1.91
  9. Lade, P.V. (1977), "Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces", Int. J. Solids Struct., 113(11), 1019-1035.
  10. Lade, P.V. (2006), "Assessment of test data for selection of 3-D failure criterion for sand", Int. J. Numer. Anal. Meth. Geomech., 30(4), 307-333. https://doi.org/10.1002/nag.471
  11. Lade, P.V. and Duncan, J.M. (1975), "Elastoplastic stress-strain theory for cohesionless soil", J. Geotech. Eng. Div., 101(10), 1037-1053.
  12. Lagioia, R., Puzrin, A.M. and Potts, D.M. (1996), "A new versatile expression for yield and plastic potential surfaces", Comput. Geotech., 19(3), 171-191. https://doi.org/10.1016/0266-352X(96)00005-5
  13. Li, X.S., Dafalias, Y.F. and Wang, Z.L. (1999), "State-dependant dilatancy in critical-state constitutive modelling of sand", Can. Geotech. J., 36(4), 599-611. https://doi.org/10.1139/t99-029
  14. Mahmud Sazzad, M., Suzuki, K. and Modaressi-Farahmand-Razavi, A. (2012), "Macro-Micro Responses of Granular Materials under Different b Values Using DEM", Int. J. Geomech., 12(3), 220-228. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000133
  15. Manzari, M.T. and Dafalias, Y.F. (1997), "A critical state two-surface plasticity model for sands", Geotechnique, 47(2), 255-272. https://doi.org/10.1680/geot.1997.47.2.255
  16. Matsuoka, H. and Nakai, T. (1974), "Stress-deformation and strength characteristics of soil under three different principal stresses", Proceedings of Japan Society of Civil Engineers (4th Edition), 232, 59-70.
  17. Munjiza, A. (2004), The Combined Finite-Discrete Element Method, John Wiley & Sons, Ltd., Chichester, UK.
  18. Munjiza, A., Owen, D.R.J. and Bicanic, N. (1995), "A combined finite-discrete element method in transient dynamics of fracturing solids", Eng. Computation., 12(2), 145-174. https://doi.org/10.1108/02644409510799532
  19. Ng, T.T. (2004), "Macro-and micro-behaviors of granular materials under different sample preparation methods and stress paths", Int. J. Solids Struct., 41(21), 5871-5884. https://doi.org/10.1016/j.ijsolstr.2004.05.050
  20. Ng, T.T. (2005), "Behavior of gravity deposited granular material under different stress paths", Can. Geotech. J., 42(6), 1644-1655. https://doi.org/10.1139/t05-080
  21. Nova, R. (1982), "A constitutive model for soil under monotonic and cyclic loading", Soil Mech.- Trans. Cycl. Load., John Wiley & Sons Ltd., 343-362.
  22. Procopio, A.T. and Zavaliangos, A. (2005), "Simulation of multi-axial compaction of granular media from loose to high relative densities", J. Mech. Phys. Solids, 53(7), 1523-1551. https://doi.org/10.1016/j.jmps.2005.02.007
  23. Roscoe, K.H., Schofield, A. and Thurairajah, A. (1963), "Yielding of clays in states wetter than critical", Geotechnique, 13(3), 211-240. https://doi.org/10.1680/geot.1963.13.3.211
  24. Rothenburg, L. and Bathurst, R.J. (1989), "Analytical study of induced anisotropy in idealized granular materials", Geotechnique, 39(4), 601-614. https://doi.org/10.1680/geot.1989.39.4.601
  25. Rowe, P.W. (1962), "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact". Proceedings of the Royal Society of London, Series A (4th Edition), 269 (1339), 500-527. https://doi.org/10.1098/rspa.1962.0193
  26. Sun, D.A., Huang, W. and Yao, Y. (2008), "An experimental study of failure and softening in sand under three-dimensional stress condition", Granul. Matter., 10(3), 187-195. https://doi.org/10.1007/s10035-008-0083-5
  27. Suzuki, K. and Yanagisawa, E. (2006), "Principal deviatoric strain increment ratios for sand having inherent transverse isotropy", Int. J. Geomech., 6(5), 356-366. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:5(356)
  28. Thornton, C. (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), 43-53. https://doi.org/10.1680/geot.2000.50.1.43
  29. Wan, R.G. and Guo, P.J. (1998), "A simple constitutive model for granular soils: modified stress-dilatancy approach", Comput. Geotech., 22(2), 109-133. https://doi.org/10.1016/S0266-352X(98)00004-4
  30. Xiao, Y., Liu, H.L., Zhu, J.G. and Shi, W.C. (2011), "Dilatancy equation of rockfill material under the true triaxial stress condition", Sci. China Tech. Sci., 54(1), 175-184.
  31. Yang, Y. and Muraleetharan, K.K. (2003), "The middle surface concept and its application to the elasto-plastic behaviour of saturated sands", Geotechnique, 53(4), 421-431. https://doi.org/10.1680/geot.2003.53.4.421

피인용 문헌

  1. Study of the effects of anisotropic consolidation on granular materials under complex stress paths using the DEM vol.19, pp.4, 2017, https://doi.org/10.1007/s10035-017-0763-0
  2. Role of particle crushing on particle kinematics and shear banding in granular materials 2018, https://doi.org/10.1007/s11440-017-0621-6
  3. Numerical simulation of the reinforcement effect of rock bolts in granular mixtures 2017, https://doi.org/10.1080/19648189.2017.1311807
  4. Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials vol.12, pp.3, 2017, https://doi.org/10.1007/s11440-017-0530-8
  5. Distinct Element Modelling of a Landslide Triggered by the 5.12 Wenchuan Earthquake: A Case Study vol.36, pp.4, 2018, https://doi.org/10.1007/s10706-018-0481-3
  6. Experimental investigation of effects of sand contamination on strain modulus of railway ballast vol.14, pp.6, 2018, https://doi.org/10.12989/gae.2018.14.6.563
  7. A numerical analysis of the equivalent skeleton void ratio for silty sand vol.17, pp.1, 2019, https://doi.org/10.12989/gae.2019.17.1.019
  8. Interfacial Shearing Behavior Analysis of Rockfill Using FDEM Simulation with Irregularly Shaped Particles vol.20, pp.3, 2020, https://doi.org/10.1061/(asce)gm.1943-5622.0001590
  9. Efficient flexible boundary algorithms for DEM simulations of biaxial and triaxial tests vol.23, pp.3, 2020, https://doi.org/10.12989/gae.2020.23.3.189
  10. Experimental Study on the Applicability of Failure Criteria for Rockfill in Three-Dimensional Stress Conditions vol.21, pp.7, 2021, https://doi.org/10.1061/(asce)gm.1943-5622.0002072
  11. Investigation of the grain breakage behaviour of 2D granular materials with disordered pore distribution vol.8, pp.5, 2014, https://doi.org/10.1007/s40571-020-00379-6