Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Alonso, E.E., Iturralde, E.F.O. and Romero, E.E. (2007), "Dilatancy of coarse granular aggregates", Exp. Unsatur. Soil Mech., 112, 119-135. https://doi.org/10.1007/3-540-69873-6_11
- Barreto, D. and O'Sullivan, C. (2012), "The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions", Granul. Matter., 14(4), 505-521. https://doi.org/10.1007/s10035-012-0354-z
- Chang, C.S. and Yin, Z.Y. (2009), "Modeling stress-dilatancy for sand under compression and extension loading conditions", J. Eng. Mech., 136(6), 777-786.
- Cheng, Z.L., Zuo, Y.Z. and Ding, H.S. (2010), "Wetting characteristics of coarse- grained materials", Chin. J. Geotech. Eng., 32(2), 243-247.
- Cui, Y.J. and Delage, P. (1996), "Yielding and plastic behaviour of an unsaturated compacted silt", Geotechnique, 46(2), 291-311. https://doi.org/10.1680/geot.1996.46.2.291
- Cundall, P.A. and Hart, R.D. (1992), "Numerical modelling of discontinua", Eng. Computation., 9(2), 101-113. https://doi.org/10.1108/eb023851
- Gajo, A. and Wood, M. (1999), "Severn-trent sand: A kinematic-hardening constitutive model: The q-p formulation", Geotechnique, 49(5), 595-614. https://doi.org/10.1680/geot.1999.49.5.595
- Jefferies, M.G. (1993), "Nor-Sand: A simle critical state model for sand", Geotechnique, 43(1), 91-103. https://doi.org/10.1680/geot.1993.43.1.91
- Lade, P.V. (1977), "Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces", Int. J. Solids Struct., 113(11), 1019-1035.
- Lade, P.V. (2006), "Assessment of test data for selection of 3-D failure criterion for sand", Int. J. Numer. Anal. Meth. Geomech., 30(4), 307-333. https://doi.org/10.1002/nag.471
- Lade, P.V. and Duncan, J.M. (1975), "Elastoplastic stress-strain theory for cohesionless soil", J. Geotech. Eng. Div., 101(10), 1037-1053.
- Lagioia, R., Puzrin, A.M. and Potts, D.M. (1996), "A new versatile expression for yield and plastic potential surfaces", Comput. Geotech., 19(3), 171-191. https://doi.org/10.1016/0266-352X(96)00005-5
- Li, X.S., Dafalias, Y.F. and Wang, Z.L. (1999), "State-dependant dilatancy in critical-state constitutive modelling of sand", Can. Geotech. J., 36(4), 599-611. https://doi.org/10.1139/t99-029
- Mahmud Sazzad, M., Suzuki, K. and Modaressi-Farahmand-Razavi, A. (2012), "Macro-Micro Responses of Granular Materials under Different b Values Using DEM", Int. J. Geomech., 12(3), 220-228. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000133
- Manzari, M.T. and Dafalias, Y.F. (1997), "A critical state two-surface plasticity model for sands", Geotechnique, 47(2), 255-272. https://doi.org/10.1680/geot.1997.47.2.255
- Matsuoka, H. and Nakai, T. (1974), "Stress-deformation and strength characteristics of soil under three different principal stresses", Proceedings of Japan Society of Civil Engineers (4th Edition), 232, 59-70.
- Munjiza, A. (2004), The Combined Finite-Discrete Element Method, John Wiley & Sons, Ltd., Chichester, UK.
- Munjiza, A., Owen, D.R.J. and Bicanic, N. (1995), "A combined finite-discrete element method in transient dynamics of fracturing solids", Eng. Computation., 12(2), 145-174. https://doi.org/10.1108/02644409510799532
- Ng, T.T. (2004), "Macro-and micro-behaviors of granular materials under different sample preparation methods and stress paths", Int. J. Solids Struct., 41(21), 5871-5884. https://doi.org/10.1016/j.ijsolstr.2004.05.050
- Ng, T.T. (2005), "Behavior of gravity deposited granular material under different stress paths", Can. Geotech. J., 42(6), 1644-1655. https://doi.org/10.1139/t05-080
- Nova, R. (1982), "A constitutive model for soil under monotonic and cyclic loading", Soil Mech.- Trans. Cycl. Load., John Wiley & Sons Ltd., 343-362.
- Procopio, A.T. and Zavaliangos, A. (2005), "Simulation of multi-axial compaction of granular media from loose to high relative densities", J. Mech. Phys. Solids, 53(7), 1523-1551. https://doi.org/10.1016/j.jmps.2005.02.007
- Roscoe, K.H., Schofield, A. and Thurairajah, A. (1963), "Yielding of clays in states wetter than critical", Geotechnique, 13(3), 211-240. https://doi.org/10.1680/geot.1963.13.3.211
- Rothenburg, L. and Bathurst, R.J. (1989), "Analytical study of induced anisotropy in idealized granular materials", Geotechnique, 39(4), 601-614. https://doi.org/10.1680/geot.1989.39.4.601
- Rowe, P.W. (1962), "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact". Proceedings of the Royal Society of London, Series A (4th Edition), 269 (1339), 500-527. https://doi.org/10.1098/rspa.1962.0193
- Sun, D.A., Huang, W. and Yao, Y. (2008), "An experimental study of failure and softening in sand under three-dimensional stress condition", Granul. Matter., 10(3), 187-195. https://doi.org/10.1007/s10035-008-0083-5
- Suzuki, K. and Yanagisawa, E. (2006), "Principal deviatoric strain increment ratios for sand having inherent transverse isotropy", Int. J. Geomech., 6(5), 356-366. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:5(356)
- Thornton, C. (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), 43-53. https://doi.org/10.1680/geot.2000.50.1.43
- Wan, R.G. and Guo, P.J. (1998), "A simple constitutive model for granular soils: modified stress-dilatancy approach", Comput. Geotech., 22(2), 109-133. https://doi.org/10.1016/S0266-352X(98)00004-4
- Xiao, Y., Liu, H.L., Zhu, J.G. and Shi, W.C. (2011), "Dilatancy equation of rockfill material under the true triaxial stress condition", Sci. China Tech. Sci., 54(1), 175-184.
- Yang, Y. and Muraleetharan, K.K. (2003), "The middle surface concept and its application to the elasto-plastic behaviour of saturated sands", Geotechnique, 53(4), 421-431. https://doi.org/10.1680/geot.2003.53.4.421
Cited by
- Study of the effects of anisotropic consolidation on granular materials under complex stress paths using the DEM vol.19, pp.4, 2017, https://doi.org/10.1007/s10035-017-0763-0
- Role of particle crushing on particle kinematics and shear banding in granular materials 2018, https://doi.org/10.1007/s11440-017-0621-6
- Numerical simulation of the reinforcement effect of rock bolts in granular mixtures 2017, https://doi.org/10.1080/19648189.2017.1311807
- Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials vol.12, pp.3, 2017, https://doi.org/10.1007/s11440-017-0530-8
- Distinct Element Modelling of a Landslide Triggered by the 5.12 Wenchuan Earthquake: A Case Study vol.36, pp.4, 2018, https://doi.org/10.1007/s10706-018-0481-3
- Experimental investigation of effects of sand contamination on strain modulus of railway ballast vol.14, pp.6, 2018, https://doi.org/10.12989/gae.2018.14.6.563
- A numerical analysis of the equivalent skeleton void ratio for silty sand vol.17, pp.1, 2019, https://doi.org/10.12989/gae.2019.17.1.019
- Interfacial Shearing Behavior Analysis of Rockfill Using FDEM Simulation with Irregularly Shaped Particles vol.20, pp.3, 2020, https://doi.org/10.1061/(asce)gm.1943-5622.0001590
- Efficient flexible boundary algorithms for DEM simulations of biaxial and triaxial tests vol.23, pp.3, 2020, https://doi.org/10.12989/gae.2020.23.3.189
- Experimental Study on the Applicability of Failure Criteria for Rockfill in Three-Dimensional Stress Conditions vol.21, pp.7, 2021, https://doi.org/10.1061/(asce)gm.1943-5622.0002072
- Investigation of the grain breakage behaviour of 2D granular materials with disordered pore distribution vol.8, pp.5, 2014, https://doi.org/10.1007/s40571-020-00379-6