References
- Ahnberg, H. (2006), "Strength of stabilised soils: A laboratory study on clays and organic soils stabilized with different types of binder", Doctoral Thesis, (Printed by KFS i Lund AB), Lund, Sweden; April 2006. ISBN: 978-91-628-6790-4
-
Al-Mukhtar, M., Lasledj, A. and Alcover, J.F. (2010), "Behaviour and mineralogy changes in lime-treated expansive soil at
$20{^{\circ}C}$ ", Appl. Clay Sci., 50(2), 191-198. https://doi.org/10.1016/j.clay.2010.07.023 - Arroyo, M., Ciantia, M., Castellanza, R., Gens, A. and Nova, R. (2012), "Simulation of cement-improved clay structures with a bonded elasto-plastic model: A practical approach", Comput. Geotech., 45, 140-150. https://doi.org/10.1016/j.compgeo.2012.05.008
- ASTM C33 (2003), Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, USA.
- Azadegan, O., Jafari, S.H. and Li, J. (2012), "Compaction characteristics and mechanical properties of lime/cement treated granular soils", Electr. J. Geotech. Eng. (EJGE), 17, 2275-2284.
- Boswell, L.F. and Chen, Z. (1987), "A general failure criterion for plain concrete", Int. J. Solid Struct., 23(5), 621-630. https://doi.org/10.1016/0020-7683(87)90022-9
- Budhu, M. (2011), Soil Mechanics and Foundations, John Wiley & Sons.
- Calik, U. and Sadoglu, E. (2014), "Engineering properties of expansive clayey soil stabilized with lime and perlite", Geomech. Eng., Int. J., 6(4), 403-418. https://doi.org/10.12989/gae.2014.6.4.403
- Chiu, C.F., Zhu, W. and Zhang, C.L. (2008), "Yielding and shear behaviour of cement-treated dredged materials", Eng. Geol., 103(1-2), 1-12.
- Gueddouda, M.K., Goual, I., Lamara, M., Smaida, A. and Mekart, B. (2011), "Chemical Stabilization of Expansive Clays from Algeria", Global J. Res. Eng. (J. General Eng.), 11(5), 1-8.
- Hegermier, G.A. and Read, H.E. (1985), "On deformation and failure of brittle solids: Some outstanding issues", Mech. Mater., 4(3-4), 215-259. https://doi.org/10.1016/0167-6636(85)90022-5
- Hossain, K.M.A., Lachemi, M. and Easa, S. (2007), "Stabilized soils for construction applications incorporating natural resources of Papua New Guinea", Res. Conserv. Recycl., 51(4), 711-731. https://doi.org/10.1016/j.resconrec.2006.12.003
- Jan, G. and Van Mier, M. (2008), "Framework for a generalized four-stage fracture model of cement-based materials", Eng. Fract. Mech., 75(18), 5072-5086. https://doi.org/10.1016/j.engfracmech.2008.07.011
- Ladd, R.S. (1978), "Preparing test specimens using undercompaction", Geotech. Test. J., GTJODJ, 1(1), 16-23. https://doi.org/10.1520/GTJ10364J
- Mitchell, J.K. (1976), "The properties of cement-stabilized soils", Proceedings of Residential Workshop on Materials and Methods for Low Cost Road, Rail, and Reclamation Works, Unisearch Ltd., Leura, Australia, September, pp. 365-404.
- Nayak, S. and Sarvade, P.G. (2011), "Effect of cement and quarry dust on shear strength and hydraulic characteristics of lithomargic clay", Geotech. Geol. Eng., 30(2), 419-430. DOI: 10.1007/s10706-011-9477-y
- Okyay, U.S. and Dias, D. (2010), "Use of lime and cement treated soils as pile supported load transfer platform", Eng. Geol., 114(1-2), 34-44. https://doi.org/10.1016/j.enggeo.2010.03.008
- Senyur, G. and Erer, D. (1990), "Cement stabilization of crushed aggregate: analysis of the properties related to curing time", Min. Sci. Tech., 10(3), 315-321. https://doi.org/10.1016/0167-9031(90)90517-V
- Sharma, M.S.R., Baxter, C.D.P., Huffman, W., Moran, K. and Vaziri, H. (2010), "Characterization of weakly cemented sands using nonlinear failure envelopes", Int. J. Rock Mech. Min. Sci., 48(1), pp. 146-151.
- Sharma, M.S.R., Baxter, C.D.P., Moran, K., Vaziri, H. and Narayanasamy, R. (2011), "Strength of weakly cemented sands from drained multistage triaxial tests", J. Geotech. Geoenviron. Eng., 137(12), 1202-1210. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000537
- Sing, W.L., Hashim, R. and Haji Ali, F. (2008), "Engineering behaviour of stabilized peat soil", Euro. J. Sci. Res., 21(4), 581-591.
- Yong, R.N. and Ouhadi, V.R. (2007), "Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils", Appl. Clay Sci., 35(3-4), 238-249. https://doi.org/10.1016/j.clay.2006.08.009
- Yoon, S. and Abu-Farsakh, M. (2009), "Laboratory investigation on the strength characteristics of cement-sand as base material", KSCE J. Civil Eng., 13(1), 15-22. https://doi.org/10.1007/s12205-009-0015-x
Cited by
- Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay vol.13, 2017, https://doi.org/10.1016/j.grj.2017.02.001
- Study properties of soft subgrade soil stabilized by sewage sludge/lime and nano-SiO2 vol.10, pp.6, 2016, https://doi.org/10.12989/gae.2016.10.6.793
- Laboratory Study of the Effect of Degrees of Saturation on Lime Concrete Resistance Due to the Groundwater Level Increment vol.36, pp.1, 2018, https://doi.org/10.1007/s10706-017-0335-4
- Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash vol.14, pp.6, 2014, https://doi.org/10.12989/gae.2018.14.6.533
- Stabilized marine and desert sands with deep mixing of cement and sodium bentonite vol.14, pp.6, 2014, https://doi.org/10.12989/gae.2018.14.6.553
- Prediction models of the shear modulus of normal or frozen soil-rock mixtures vol.15, pp.2, 2014, https://doi.org/10.12989/gae.2018.15.2.783
- Lithological classification of cement quarry using discriminant algorithms vol.26, pp.3, 2014, https://doi.org/10.1007/s11771-019-4042-6