DOI QR코드

DOI QR Code

Empirical Formula of Delay Time for Groundwater Recharge in the Representative Watersheds, Jeju Island

제주 대표유역에 대한 함양지체시간의 경험식

  • Kim, Nam Won (Korea Institute of Civil engineering and building Technology) ;
  • Na, Hanna (Korea Institute of Civil engineering and building Technology) ;
  • Chung, Il-Moon (Korea Institute of Civil engineering and building Technology) ;
  • Kim, Youn Jung (Korea Institute of Civil engineering and building Technology)
  • Received : 2014.03.21
  • Accepted : 2014.08.04
  • Published : 2014.09.30

Abstract

Delay time for groundwater recharge means the travel time from the bottom of soil layer to groundwater through vadose zone after infiltration from rainfall. As it is difficult to measure delay time, we suggested an empirical formula which is derived by using linear regression between altitude and delay time. For the regression analysis, 4 major gauging watersheds were chosen (Hancheon, Kangjeongcheon, Oedocheon, Cheonmicheon) with 18 measured groundwater level stations. To verify this empirical formula, derived equation from linear reservoir theory was applied to compute delay time and to compare estimated amounts of groundwater recharge using both methods. The result showed good agreement. Furthermore, if derived empirical formula would be linked with SWAT model, the spatial time delay effect in the watershed could be reflected properly.

함양 지체시간은 강우로부터 지표면을 지나 지하수면으로 도달하는 침투수의 통로 역할을 하는 비포화대를 통과할 때 발생하는 시간지연을 의미한다. 함양 지체시간을 직접적으로 측정하는 것은 불가능하기 때문에 본 연구는 고도와의 단순회귀분석을 이용하여 지체시간에 대한 경험식을 유도하였다. 이를 위하여 제주도 내에 4개의 유역(한천, 강정천, 외도천, 천미천)을 선정하여 총 18개의 관측지점에 대한 지체시간을 산정하였다. 또한 제안된 회귀식을 검증하기 위하여 선형 저수지 이론으로부터 유도된 방정식을 적용하여 구한 지체시간과 본 연구에서 유도된 경험식으로부터 산정된 지체시간을 이용하여 각각 산정한 지하수 함양량을 비교한 결과 상관성이 높은 것을 확인할 수 있었다. 따라서 본 연구에서 유도한 경험식을 이용하여 SWAT모형의 지체시간 매개변수에 적용할 경우 지하수 함양의 공간적 지연효과를 잘 반영할 것으로 판단된다.

Keywords

References

  1. Arnold, J.G., Srinivasan, R., Muttiah, R., and Williams, J.R. (1998). "Large area hydrologic modeling and assessment part I: model development." Journal of the American Water Resources Association, Vol. 34, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  2. Boulton, N.S. (1954). "Unsteady radial flow to a pumped well allowing for delayed yield from storage." Intern. Assoc. Sci. Hydrol., Rome. Publ., Vol. 37, pp. 472-477.
  3. Cho, J.W., and Park, E.G. (2008). "A study on delineation of groundwater recharge rate using water-table fluctuation and unsaturate zone soil water content model." Journal of Soil & Groundwater Environment, Vol. 13, No. 1, pp. 67-76.
  4. Chung, I.M., Kim, N.W., Lee, J., and Sophocleous, M. (2010). "Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea." Hydrogeology Journal, Vol. 18, No. 5, pp. 1253-1264. https://doi.org/10.1007/s10040-010-0593-1
  5. Chung, I.M., Lee, J., Kim, J.T., Na, H., and Kim, N.W. (2011). "Development of threshold runoff simulation method for runoff analysis of Jeju Island." J. Environ. Sci., Vol. 20, No. 10, pp. 1347-1355.
  6. Hendrickx, J.M.H, Khan, A.S., Bannink, M.H., Birch, D., and Kidd, C. (1991). "Numerical analysis of groundwater recharge through stony soils using limited data." J. Hydrol., Vol. 127, pp. 173-192. https://doi.org/10.1016/0022-1694(91)90114-W
  7. Kim, N.W., Na, H., and Chung, I.M. (2014). "Delay time estimation of recharge in the Hancheon watershed, Jeju Island." Journal of environmental science international, Vol. 23, No. 4, pp. 605-613. https://doi.org/10.5322/JESI.2014.4.605
  8. Kim, N.W., Um, M.J., Chung, I.M., and Heo, J.H. (2012). "Estimating the total precipitation amount with simulated precipitation for ungauged stations in Jeju island." J. Korea Water Resour. Assoc, Vol. 45, No. 9, pp. 875-885. https://doi.org/10.3741/JKWRA.2012.45.9.875
  9. Kim, S.H., Park, E.G., Kim, Y.S., and Kim, N.J. (2011). "A modification of water table fluctuation model considering delayed drainage effect of unsaturated zone." Journal of Korean Society of Soil and Groundwater Environment, Vol. 16, No. 3, pp. 17-27. https://doi.org/10.7857/JSGE.2011.16.3.017
  10. Kim. N.W., Kim, Y.J., and Chung, I.M. (2013a). "Development of analyzing model of groundwater table fluctuation (I): Theory of model." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 6, pp. 2277-2284. https://doi.org/10.12652/Ksce.2013.33.6.2277
  11. Kim, N.W., Kim, Y.J., and Chung, I.M. (2013b). "Development of analyzing model of groundwater table fluctuation (II): Characteristics of recharge." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 6, pp. 2285-2291. https://doi.org/10.12652/Ksce.2013.33.6.2285
  12. Kim, N.W., Chung, I.M., and Na, H. (2013c). "A method of simulating ephemeral stream runoff characteristics in Cheonmi-cheon watershed." Jeju Island, Journal of Environmental Science International, Vol. 22, No. 5, pp. 523-531. https://doi.org/10.5322/JESI.2013.22.5.523
  13. Koo. M.H., and Kim, Y.J. (2003). "Use of an infiltration model for analyzing temporal variation of precipitation recharge in the climatological environment of Korea." Journal of the geological society of Korea, Vol. 39, No. 2, pp. 249-261.
  14. Koo. M.H., and Lee, D.H. (2002). "A numerical analysis of the water level fluctuation method for quantifying groundwater recharge." Journal of the Geological Society of Korea, Vol. 38, No. 3, pp. 407-420.
  15. Moench, A.F. (1995). "Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer." Ground Water, Vol. 33, No. 3, pp. 378-384. https://doi.org/10.1111/j.1745-6584.1995.tb00293.x
  16. Park. E.G., and Parker, J.C. (2008). "A simple model for water table fluctuations in response to precipitation." Journal of Hydrology, Vol. 356, pp. 344-349. https://doi.org/10.1016/j.jhydrol.2008.04.022
  17. Sangrey, D.A., Harrop-Williams, K.O., and Klaiber, J.A. (1984). "Predicting groundwater response to precipitation."ASCE J. Geotech. Eng., Vol. 110, No. 7, pp. 957-975. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(957)
  18. Shin, K.H. (2012). Analyzing effects of the unsaturated zone thickness on groundwater recharge in Jeju island: use of a convolution method, M. S. dissertation, University of Kongju, pp. 1-3.
  19. Song, Y.G. (2011). Modeling dispersive and timedelaying groundwater recharge in Jeju island, M. S. dissertation, University of Kongju, pp. 1.
  20. Venetis, C. (1969). "A study of the recession of unconfined aquifers." Bul, Int. Assoc. Sci. Hydrol, Vol. 14, No. 4, pp. 119-125.
  21. Wu, J., Zhang, R., and Yang, J. (1996). "Analysis of rainfall-recharge relationships." Journal of Hydrolology, Vol. 177, pp. 143-160. https://doi.org/10.1016/0022-1694(95)02935-4

Cited by

  1. Complementary Relationship Based Evaportranspiration Estimation Model Suitable for the Hancheon and Kangjeongcheon Watersheds in Jeju Island vol.47, pp.12, 2014, https://doi.org/10.3741/JKWRA.2014.47.12.1155
  2. Evaluation and complementation of observed flow in the Hancheon watershed in Jeju Island using a physically-based watershed model vol.49, pp.11, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.951