DOI QR코드

DOI QR Code

Chemical/Biological/Radiological Protective Facility Entering Time Estimation Simulation with Procedure Analysis

화생방 방호시설의 행동 절차 분석을 통한 진입 소요시간 예측 시뮬레이션

  • Park, Sun Ho (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Lee, Hyun-Soo (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Park, Moonseo (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Kim, Sooyoung (Department of Architecture and Architectural Engineering, Seoul National University)
  • Received : 2014.05.13
  • Accepted : 2014.06.23
  • Published : 2014.09.30

Abstract

As CBR(Chemical, Biological, and Radiological) attack increases, the importance of CBR protective facilities is being emphasized. When CBR warfare emerges, a task force team, who exist outside of CBR protective facility, should enter the CBR protective facility through neutralizing process in CCA(Contamination Control Area) and TFA(Toxic Free Area). If a bottleneck occurs in the process or zones, the task force team cannot enter the CBR protective facility efficiently and may cause inefficiency in its operation performance or result in casualties. The current design criteria of the CBR protective facility is only limited to ventilation system and it does not consider how much time it takes to enter the facility. Therefore, this research aims to propose the entering time estimation model with discrete event simulation. To make the simulation model, the procedure performed through CCA and TFA is defined and segmented. The actual time of the procedure are measured and adapted for the simulation model. After running the simulation model, variables effecting the entering time are selected for alternatives with adjustments. This entering time estimation model for CBR protective facility is expected to help take time into consideration during the designing phase of CBR protective facility and help CBR protective facility managers to plan facility operation in a more realistic approach.

최근 화생방 공격에 대한 위협이 증가함에 따라 화생방 방호시설의 중요성이 강조되고 있다. 화생방전 발생 시 화생방 방호시설 외부에 있는 작전인원은 화생방 방호시설 내 오염통제구역 및 무해구역에서 제독과정을 거쳐 방호시설 내부로 진입하게 된다. 이 과정에서 부족한 설비 등으로 인해 특정 절차 및 구역에서 병목현상이 발생할 경우 작전인원은 제시간에 방호시설 내로 진입 할 수 없게 되며, 이는 전시 작전 수행의 효율성 저하뿐만 아니라 큰 인명피해로도 이어지게 된다. 현재의 화생방 방호시설 설계기준은 공조시스템 등 특정 설비에 국한되어 있으며, 실제 화생방전 발생 시 실제 진입 소요시간을 고려한 설계기준은 부재한 실정이다. 본 연구에서는 화생방 방호시설 진입 소요시간에 크게 영향을 미치는 요소를 시뮬레이션에 반영하여 화생방 방호시설 진입 소요시간을 예측하는 시뮬레이션 모델을 개발하였다. 이를 위해 오염통제구역 및 무해구역에서 이루어지는 행동절차를 세분화하고, 각 행동절차에 소요되는 실제 시간을 측정하여 이를 시뮬레이션에 적용하였다. 또한 진입 소요시간에 영향을 미치는 요인들을 선정하여 이들의 조절을 통해 대안을 작성하고 각 대안별 진입 소요시간 및 전체결과에 미치는 영향을 분석하였다. 이 모델은 향후 화생방 방호시설 진입 시뮬레이터의 모듈로써 활용될 수 있으며 방호시설 설계 및 운용자의 의사결정 기초자료로 활용될 수 있다.

Keywords

References

  1. Banks, J., Carson, J. S., Nelson, B. L. and Nicol, D. M. (2000). Discrete-event System Simulation, 3rd Ed, McGraw-hill, p. 12.
  2. Benjamin P. T., and Lawrence C. B. (2008). "Survey of Bioterrorism Risk in Buildings", Journal of Architectural Engineering, 14(1), pp. 7-17. https://doi.org/10.1061/(ASCE)1076-0431(2008)14:1(7)
  3. Jeong, Y. S. (2010). "A Study on Problems with the ROK's Bioterrorism Response System and Ways to Improve it", Korea Security Science Association, 22, pp. 113-144.
  4. Kim, K. M., Seo, H. B., Hwang, H. J., and Kim, K. J. (2007). "Application of Discrete Event Simulation on Tunnel Muck Hauling Operations", Korean journal of construction engineering and management, KICEM, 8(1), pp. 141-149.
  5. Kim, Y. H. (2011). "A Study on the efficiency improvement of shelter facilities operations in chemical, biological and radiological warfare", Master thesis, University of Yonsei.
  6. Ministry of National Defense (2012). National Defense.Military Facility Design Criteria - Chemical, Biological, and Radiological Protective Facility Design Book, Ministry of National Defense.
  7. National Emergency Management Agency (2009). The Criteria and Practical Use of Chemical, Biological, and Radiological Protective Facility.
  8. National Emergency Management Agency (2011). Standard Model of Emergency Chemical, Biological, and Radiological Protective Facility for Private Citizen.
  9. National Emergency Management Agency (2012). Manual of Civil Defense Equipment of Chemical, Biological, and Radiological Warfare.
  10. Park, D. W. (2009). "The threat analysis and countermeasure of Chemical, Biological, and Radiological attack", The Korean Association for Crisis and Emergency Management, KACEM, 1(1), pp. 389-400.
  11. Sim, W. S., and Hwang, T. Y. (2003). "The Air Conditioning Equipment System for Chemical, Biological, and Radiological Protective Facility", Korea Air Cleaning Association, 16(4), pp. 49-60.
  12. U.S. Department of Defense (2008). Security Engineering: Procedures for Designing Airborne Chemical, Biological, and Radiological Protection for Buildings, U.S.
  13. Victor M. N., William J. G., and Dulcy M. A. (2009). "Methodology to Assess Building Designs for Protection against Internal Chemical and Biological Threats", Journal of Computing in Civil Engineering, 23(1), pp. 14-21. https://doi.org/10.1061/(ASCE)0887-3801(2009)23:1(14)
  14. Wladyslaw K., William B., and Amy M. (2003). "Modeling Immune Building Systems for Bioterrorism Defense", Journal of Architectural Engineering, 9(2), pp. 86-96. https://doi.org/10.1061/(ASCE)1076-0431(2003)9:2(86)
  15. Yang, K. H., Lee, H. S., Park, M. S., Jeong, M. H., and Hwang, S. J. (2013). "A Study of the Tower Crane Hoisting Time Estimation Simulation Model with Climate Element for the High-Rise building Construction", Korean journal of construction engineering and management, KICEM, 14(2), pp. 96-107. https://doi.org/10.6106/KJCEM.2013.14.2.096