DOI QR코드

DOI QR Code

역량스펙트럼 방법을 이용한 피뢰기의 지진취약도 해석

Seismic Fragility Analysis of Lightning Arrester using Capacity Spectrum Method

  • Kim, Gwang-Jeon (Department of Civil Engineering, Kangwon National University) ;
  • Song, Jong-Keol (Department of Civil Engineering, Kangwon National University)
  • 투고 : 2014.07.10
  • 심사 : 2014.07.20
  • 발행 : 2014.08.30

초록

본 연구에서 피뢰기의 지진취약도 해석은 역량스펙트럼 방법을 이용하여 수행하였다. 많은 구조부재를 가진 구조물의 지진취약도 해석은 수십 혹은 수백 개의 지진하중에 대한 비탄성 지진응답을 계산하는 것이 요구되기 때문에 역량스펙트럼 방법과 같은 간단한 방법이 응답이력해석 보다 적합하다. 일반적으로 역량스펙트럼 방법에 의해 평가된 지진응답의 정확성은 응답이력해석에 의한 결과의 정확성 보다 떨어진다. 역량스펙트럼 방법의 정확성을 향상시키기 위하여 등가단자유도 방법과 성능점 계산기법이 적용되었다. 지진취약도에 대한 지진에 대한 지반효과를 평가하기 위하여 60개의 다른 지반종류의 지반운동을 입력지진으로 선정하여 사용하였다. 역량스펙트럼 방법과 응답이력해석에 의한 지진취약도 곡선의 비교로부터 역량스펙트럼 방법에 의한 지진취약도 곡선이 응답이력해석에 의한 지진취약도 곡선과 상당히 유사함을 알 수 있었다. 또한, 피뢰기의 주된 지진에 의한 파괴모드는 부싱의 파손임을 알 수 있었다.

In this paper, seismic fragility analysis of lightning arrester is performed using capacity spectrum method(CSM). Since seismic fragility analysis of structure with many structural members is required to calculate many inelastic responses for several tens or hundreds of ground motions, simple method such as CSM is more appropriate than response history analysis(RHA). In general, accuracy of seismic response evaluated by CSM is less than that by RHA. In order to increase accuracy of CSM, equivalent SDOF method and performance point calculation technique are applied to CSM. Seismic fragility method proposed by Shinozuka et al. is used. In order to evaluate site effect of ground motions on seismic fragility, 60 different site classification earthquakes are selected as input ground motions. From the seismic fragility curves of lightning arrester evaluated by CSM and RHA, it can be observed that the seismic fragility curves evaluated by CSM are very similar to those by RHA. Also, it can be observed that main seismic failure mode of lightning arrest is bushing breakage.

키워드

참고문헌

  1. Barbat, A.H., Pujades, L.G., Nieves Lantada, N. (2008) Seismic Damage Evaluation in Urban Areas Using the Capacity Spectrum Method, Soil Dynamics and Earthquake Engineering. 28, pp.851-865. https://doi.org/10.1016/j.soildyn.2007.10.006
  2. Jin, H.S., Song, J.K. (2010) Effect of Near- and far- Fault Earthquakes for Seismic Fragility Curves of PSC Box Girder Bridges, Journal of the Korean Society of Civil Engineers. 14, pp.53-64. https://doi.org/10.5000/EESK.2010.14.5.053
  3. Kim, M.K., Choun, Y.S. (2008) Seismic Fragility Evaluation of Substation System in Korea, Journal of the Korea Institute for Structural Maintenance and Inspection. 12(4), pp.14-23.
  4. Pacific Earthquake Engineering Research Center (PEERC) (2007) Open System for Earthquake Engineering Simulation. Berkeley, California; Available from: http://opensees.berkeley. edu.
  5. PEER Strong Motion Database[Internet]. Berkeley, California Available from: http://peer.berkeley.edu/smcat/sites.html.
  6. Shinozuka, M., Feng, M.Q., Kim, H.K., Ueda, T. (2001) Statistical Analysis of Fragility Curves. Technical Report at Multidisciplinary Center for Earthquake Engineering Research, NY, USA, 2001.
  7. Song, J.K.. Nam, W.H., Chung, Y.H. (2006) Nonlinear Static Analysis for Seismic Performance Evaluation of Multi-span Bridges considering Effect of Equivalent SDOF methods, Journal of the Korean Society of Civil Engineers, 26(3A), pp.473-484.
  8. Song, J.K. (2004) Evaluation of Inelatic Seismic Responses of Multi-Degree-of-Freedom Bridge Structures using Capacity Cpectrum Method, Journal of the Korean Society of Civil Engineers, 24(3A), pp.541-550.
  9. Song, J.K., Jin, H.S., Lee, T.H. (2009) Seismic Fragility Analysis for Probabilistic Performance Evaluation of PSC Box Girder Bridges, Journal of the Korean Society of Civil Engineers, 29, pp.119-130.