DOI QR코드

DOI QR Code

GFRP 판으로 보강된 플랫 플레이트의 전단강도식에 관한 규준의 비교 분석

Comparison of Shear Strength Equation for Flat Plates with GFRP Plate

  • Kim, Min Sook (Department of Architectural Engineering, Kyung Hee University) ;
  • Hwang, Seung Yeon (Department of Architectural Engineering, Kyung Hee University) ;
  • Kim, Heecheul (Department of Architectural Engineering, Kyung Hee University) ;
  • Lee, Young Hak (Department of Architectural Engineering, Kyung Hee University)
  • 투고 : 2014.07.10
  • 심사 : 2014.08.01
  • 발행 : 2014.08.30

초록

본 논문에서는 유공형 형상의 GFRP 판으로 전단 보강된 플랫 플레이트의 전단거동을 실험을 통해 평가하였다. GFRP 판은 개구부가 있는 판의 형태로서 콘크리트와의 일체화 거동을 위하여 콘크리트에 매립하여 시공하였다. 실험 변수로는 기둥면과 첫 번째 GFRP 판의 세로 스트립 사이의 간격, GFRP 판의 세로 스트립의 개수를 선정하였다. GFRP 판의 세로 스트립의 개수가 증가할수록 전단강도도 증가하는 결과를 보여주었다. 실험결과를 바탕으로 GFRP 판으로 보강된 플랫 플레이트의 전단강도가 ACI 318, BS 8110, EUROCODE 2, KCI에서 제시하고 있는 전단강도와 비교하여 가장 합리적인 규준을 평가하였다.

In this study, shear test performed to investigate the shear behavior of flat plate that reinforced by embedded GFRP(glass fiber reinforced polymer) plate with openings. Shape of the GFRP shear reinforcement is a plate with several openings to ensure perfect integration with concrete. The test parameters include the distance between the column face and the first line of GFRP plate and number of GFRP plate vertical strip. The result of test showed that when number of GFRP plate vertical strip was increased, shear strength improved. The shear strength for flat plate reinforced GFRP plate in various codes including ACI 318, BS 8110, EUROCODE 2, and KCI were compared to provide more rational approach for reinforced concrete flat plates with GFRP plate.

키워드

참고문헌

  1. ACI Committee 318-11 (2011) Building Code Requirements for Reinforced Concrete and Commentary (ACI 318-11), American Concrete Institute, Farmington Hills, p.503.
  2. Bouguerra, K., Ahmed, E.A., El-Gamal, S., Benmokrane, B. (2011) Testing of Full-scale Concrete Bridge Deck Slabs Reinforced with Fiber-reinforced Polymer (FRP) Bars, Construction and Building Materials, 25(10), pp.3956-3965. https://doi.org/10.1016/j.conbuildmat.2011.04.028
  3. BS 8110 (1997) Structural Use of Concrete, Part 1: Code of Practice for Design and Construction, British Standards Institution, London, UK, p.117.
  4. Collins M.P., Kuchma, D.K. (1999) How Safe are Our Large Lightly Reinforced Beams, Slabs, and Footings, ACI Structural Journal, 96(4), pp.482-490.
  5. European Committee for Standardization (2004) Eurocode 2 : Design of Concrete Structures, Part 1.1 : General Rules and Rules for Buildings, final draft, Brussels, p.230.
  6. Hwang, S.Y., Kim, M.S., Lee, Y.H., Kim, H. (2014) Evaluation of Shear Strength for Reinforced Flat Plates Embedded with GFRP plates, Journal of the Computational Structural Engineering Institute of Korea, 27(2), pp.121-128. https://doi.org/10.7734/COSEIK.2014.27.2.121
  7. Johansen, K.W. (1998) Yield Line Formulate for Slabs, Cement and Concrete Association, London, p.120.
  8. Korea Concrete Institute (2011) KCI Concrete Structure Design Code 2011, Seoul, p.548.
  9. Marzouk H., Hussein A. (1992) Experimental Investigations on the Behavior of High-Strength concrete Slabs, ACI Structural Journal, 88(6), pp. 107-713.
  10. Meisami, M.H., Mostofinejad, D., Nakamura, H. (2013) Punching Shear Strengthening of Two-way Flat Slabs Using CFRP Rods, Composite Structures, 99, pp.112-122. https://doi.org/10.1016/j.compstruct.2012.11.028
  11. Soudki, K., El-Sayed, A.K., Vanzwol, T. (2012) Strengthening of Concrete Slab-column Connections Using CFRP Strips, Journal of King Saud University - Engineering Sciences, 24(1), pp.25-33.