DOI QR코드

DOI QR Code

Periodic Mesh Generation for Composite Structures using Polyhedral Finite Elements

다면체 유한요소를 이용한 복합재 구조의 주기 격자망 생성

  • Sohn, Dongwoo (Division of Mechanical and Energy Systems Engineering, College of Engineering, Korea Maritime and Ocean University) ;
  • Park, Jong Youn (Product Solution Research Group, Steel Solution Center, POSCO) ;
  • Cho, Young-Sam (Division of Mechanical and Automotive Engineering, College of Engineering, Wonkwang University) ;
  • Lim, Jae Hyuk (Satellite Structure Department, Korea Aerospace Research Institute) ;
  • Lee, Haengsoo (Faculty of Mechanical Engineering, Ulsan College)
  • 손동우 (한국해양대학교 기계.에너지시스템공학부) ;
  • 박종연 (포스코 철강솔루션센터 제품솔루션 연구그룹) ;
  • 조영삼 (원광대학교 기계자동차공학부) ;
  • 임재혁 (한국항공우주연구원 위성구조팀) ;
  • 이행수 (울산과학대학교 기계공학부)
  • Received : 2014.07.10
  • Accepted : 2014.07.26
  • Published : 2014.08.30

Abstract

Finite element modeling of composite structures may be cumbersome due to complex distributions of reinforcements. In this paper, an efficient scheme is proposed that can generate periodic meshes for the composite structures. Regular meshes with hexahedral finite elements are first prepared, and the elements are then trimmed to fit external surfaces of reinforcements in the composite structures. The trimmed hexahedral finite elements located at interfaces between the matrix and the reinforcements correspond to polyhedral finite elements, which allow an arbitrary number of nodes and faces in the elements. Because the trimming process is consistently conducted by means of consistent algorithms, the elements of the reinforcements are automatically compatible with those of the matrices. With the additional consideration of periodicity of reinforcements in a representative volume element(RVE), the proposed scheme provides periodic meshes in an efficient manner, which are compatible for each pair of periodic boundaries of the RVE. Therefore, periodic boundary conditions for the RVE are enforced straightforwardly. Numerical examples demonstrate the effectiveness of the proposed scheme for finite element modeling of complex composite structures.

강화재의 복잡한 배열로 인하여 복합재 구조에 대한 유한요소 모델링은 상당히 까다로운 문제가 될 수 있다. 본 논문에서는 복합재 구조에 대하여 효율적으로 주기 격자망을 생성시킬 수 있는 기법을 제안한다. 먼저 육면체 유한요소로 구성된 규칙적인 격자망을 준비하고, 이를 복합재 내의 강화재에 대한 표면 정보에 맞추어 깎아낸다. 강화재와 기지재 사이에서 깎여진 육면체 유한요소는 임의의 절점과 면을 가질 수 있는 다면체 유한요소에 해당한다. 일관된 알고리즘을 이용하여 육면체 유한요소를 깎아내기 때문에 강화재와 기지재 사이의 요소는 자동적으로 적합한 형태로 구성된다. 또한 대표체적영역 내에서 강화재의 주기성을 추가적으로 고려하면, 대표체적영역에 대한 각각의 주기 경계 쌍에서 절점과 요소의 형태가 모두 일치하는 주기 격자망을 효율적으로 생성시킬 수 있다. 그러므로 별도의 처리 없이 대표체적영역에 주기 경계조건을 부여할 수 있다. 수치예제에서는 본 논문에서 제안한 기법의 효용성을 검증한다.

Keywords

References

  1. Bishop, J.E. (2014) A Displacement-based Finite Element Formulation for General Polyhedral using Harmonic Shape Functions, International Journal for Numerical Methods in Engineering, 97, pp.1-31. https://doi.org/10.1002/nme.4562
  2. Chung, P.W., Tamma, K.K., Namburu, R.R. (2001) Asymptotic Expansion Homogenization for Heterogeneous Media: Computational Issues and Applications, Composites: Part A, 32, pp.1291-1301. https://doi.org/10.1016/S1359-835X(01)00100-2
  3. Fritzen, F., Bohlke, T. (2011) Periodic Threedimensional Mesh Generation for Particle Reinforced Composites with Application to Metal Matrix Composites, International Journal of Solids and Structures, 48, pp.706-718. https://doi.org/10.1016/j.ijsolstr.2010.11.010
  4. Fritzen, F., Bohlke, T., Schnack, E. (2009) Periodic Three-dimensional Mesh Generation for Crystalline Aggregates based on Voronoi Tessellations, Computational Mechanics, 43, pp.701-713. https://doi.org/10.1007/s00466-008-0339-2
  5. Kim, H.-G. (2014) A Study on the Development of Shape Functions of Polyhedral Finite Elements, Journal of the Computational Structural Engineering Institute of Korea, 27, pp.183-189. https://doi.org/10.7734/COSEIK.2014.27.3.183
  6. Lorensen, W.E., Cline, H.E. (1987) Marching Cubes: A High Resolution 3D Surface Construction Algorithm, ACM SIGGRAPH Computer Graphics, 21, pp.163-169. https://doi.org/10.1145/37402.37422
  7. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M. (2008) Polyhedral Finite Elements using Harmonic Basis Functions, Computer Graphics Forum, 27, pp.1521-1529. https://doi.org/10.1111/j.1467-8659.2008.01293.x
  8. Oliveira, J.A., Pinho-da-Cruz, J., Teixeira-Dias, F. (2009) Asymptotic Homogenisation in Linear Elasticity. Part II: Finite Element Procedures and Multiscale Applications, Computational Materials Science, 45, pp.1081-1096. https://doi.org/10.1016/j.commatsci.2009.01.027
  9. Pinho-da-Cruz, J., Oliveira, J.A., Teixeira-Dias, F. (2009) Asymptotic Homogenisation in Linear Elasticity. Part I: Mathematical Formulation and Finite Element Modelling, Computational Materials Science, 45, pp.1073-1080. https://doi.org/10.1016/j.commatsci.2009.02.025
  10. Rashid, M.M., Selimotic, M. (2006) A Three-Dimensional Finite Element Method with Arbitrary Polyhedral Elements, International Journal for Numerical Methods in Engineering, 67, pp.226-252. https://doi.org/10.1002/nme.1625
  11. Reis, F.J.P., Andrade Pires, F.M. (2014) A Mortar based Approach for the Enforcement of Periodic Boundary Conditions on Arbitrarily Generated Meshes, Computer Methods in Applied Mechanics and Engineering, 274, pp.168-191. https://doi.org/10.1016/j.cma.2014.01.029
  12. Sohn, D., Cho, Y.-S., Im, S. (2012) A Novel Scheme to Generate Meshes with Hexahedral Elements and Poly-pyramid Elements: The Carving Technique, Computer Methods in Applied Mechanics and Engineering, 201-204, pp.208-227. https://doi.org/10.1016/j.cma.2011.09.002
  13. Sohn, D., Han, J., Cho, Y.-S., Im, S. (2013) A Finite Element Scheme with the aid of a New Carving Technique Combined with Smoothed Integration, Computer Methods in Applied Mechanics and Engineering, 254, pp.42-60. https://doi.org/10.1016/j.cma.2012.10.014
  14. Wang, X.F., Wang, X.W., Zhou, G.M., Zhou, C.W. (2007) Multi-scale Analyses of 3D Woven Composite based on Periodicity Boundary Conditions, Journal of Composite Materials, 41, pp.1773-1788. https://doi.org/10.1177/0021998306069891
  15. Yun, S.-H. (2000) The Finite Element Analysis for Calculations of Equivalent Elastic Constants using the Homogenization Method, Journal of the Computational Structural Engineering Institute of Korea, 13, pp.51-61.